295
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Formulation design and optimization of cationic-charged liposomes of brimonidine tartrate for effective ocular drug delivery by design of experiment (DoE) approach

&
Pages 1847-1866 | Received 15 Jul 2021, Accepted 19 Apr 2022, Published online: 19 May 2022

References

  • Zhang HH, Luo QH, Yang ZJ, et al. Novel ophthalmic timolol maleate liposomal-hydrogel and its improved local glaucomatous therapeutic effect in vivo. Drug Deliv. 2011;18(7):502–510.
  • Gan L, Wang J, Jiang M, et al. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18(5–6):290–297.
  • Maiti S, Paul S, Mondol R, et al. Nanovesicular formulation of brimonidine tartrate for the management of glaucoma: in vitro and in vivo evaluation. AAPS PharmSciTech. 2011;12(2):755–763.
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–1135.
  • Dong Y, Dong P, Huang D, et al. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82–90.
  • Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.
  • Yu S, Wang QM, Wang X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm. 2015;480(1–2):128–136.
  • Achouri D, Alhanout K, Piccerelle P, et al. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–1617.
  • Aburahma MH, Mahmoud AA. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1335–1347.
  • Fathalla D, Soliman G, Fouad E. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. J Clin Exp Ophthalmol. 2015;6(1):390.
  • Liu S, Jones LW, Gu FX. Nanotechnology and nanomaterials in ophthalmic drug delivery. In: Pathak Y, Sutariya V, Hirani AA, editors. Nano-Biomaterials for ophthalmic drug delivery. Switzerland: Springer International Publishing; 2016. p. 83–109.
  • Shen J, Wang Y, Ping Q, et al. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release. 2009;137(3):217–223.
  • Gambhire S, Bhalerao K, Singh S. In situ hydrogel: different approaches to ocular drug delivery. Int J Pharm Pharm Sci. 2013;5(2):27–36.
  • Foldvari M. Biphasic multilamellar lipid vesicles. United States patent 5,853,755. 1998.
  • Mitra AK. Ophthalmic drug delivery systems. 2nd ed. New York: Marcel Dekker Inc.; 2003.
  • Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv. 2016;23(4):1075–1091.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
  • Argikar UA, Dumouchel JL, Dunne CE, et al. Ocular non-P450 oxidative, reductive, hydrolytic, and conjugative drug metabolizing enzymes. Drug Metab Rev. 2017;49(3):372–394.
  • Rathod S, Deshpande SG. Design and evaluation of liposomal formulation of pilocarpine nitrate. Indian J Pharm Sci. 2010;72(2):155–160.
  • Fitzgerald P, Hadgraft J, Kreuter J, et al. A γ-scintigraphic evaluation of microparticulate ophthalmic delivery systems: liposomes and nanoparticles. Int J Pharm. 1987;40(1–2):81–84.
  • Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: with special reference to liposomal ocular delivery. Eur J Ophthalmol. 2019;29(1):113–126.
  • Mishra GP, Bagui M, Tamboli V, et al. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011:863734.
  • Taha EI, El-Anazi MH, El-Bagory IM, et al. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J. 2014;22(3):231–239.
  • USFDA. Liposome drug products: chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation – guidance for industry. Maryland: US Food and Drug Administration; 2018.
  • Sharma PK, Chauhan MK. Optimization and evaluation of encapsulated brimonidine tartrate-loaded nanoparticles incorporation in situ gel for efficient intraocular pressure reduction. J Sol-Gel Sci Technol. 2020;95(1):190–201.
  • Calle D, Negri V, Ballesteros P, et al. Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics. 2015;5(5):489–503.
  • Jedlovszky P, Mezei M. Effect of cholesterol on the properties of phospholipid membranes. J Phys Chem B. 2003;107(22):5311–5321.
  • Rimple Newton MJ, Impact of ocular compatible lipoids and castor oil in fabrication of brimonidine tartrate nanoemulsions by 3(3) full factorial design. Recent Pat Inflamm Allergy Drug Discov. 2018;12(2):169–183.
  • El-Salamouni NS, Farid RM, El-Kamel AH, et al. Nanostructured lipid carriers for intraocular brimonidine localisation: development, in-vitro and in-vivo evaluation. J Microencapsul. 2018;35(1):102–113.
  • Schmidl D, Schmetterer L, Garhöfer G, et al. Pharmacotherapy of glaucoma. J Ocul Pharmacol Ther. 2015;31(2):63–77.
  • Chatterjee S, Banerjee DK. Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. In: Basu S, Basu M, editors. Liposome methods and protocols. Totowa (NJ): Humana Press Inc.; 2002. p. 3–16.
  • El-Gazayerly ON, Hikal AH. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm. 1997;158(2):121–127.
  • Soni PK, Saini TR. Purification of drug loaded liposomal formulations by a novel stirred cell ultrafiltration technique. Pharm Nanotechnol. 2021;9(5):347–360.
  • Ferreira SL, Bruns RE, Ferreira HS, et al. Box–Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179–186.
  • Rane S, Prabhakar B. Optimization of paclitaxel containing pH-sensitive liposomes by 3 factor, 3 level Box–Behnken design. Indian J Pharm Sci. 2013;75(4):420–426.
  • Jafari MR, Jones AB, Hikal AH, et al. Characterization of drug release from liposomal formulations in ocular fluid. Drug Deliv. 1998;5(4):227–238.
  • Saarinen-Savolainen P, Järvinen T, Taipale H, et al. Method for evaluating drug release from liposomes in sink conditions. Int J Pharm. 1997;159(1):27–33.
  • Xu X, Khan MA, Burgess DJ. A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes. Int J Pharm. 2012;426(1–2):211–218.
  • Kouchak M, Bahmandar R, Bavarsad N, et al. Ocular dorzolamide nanoliposomes for prolonged IOP reduction: in-vitro and in-vivo evaluation in rabbits. Iran J Pharm Res. 2016;15(1):205–212.
  • Natarajan JV, Ang M, Darwitan A, et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–131.
  • Dong C-H, Xie X-Q, Wang X-L, et al. Application of Box–Behnken design in optimisation for polysaccharides extraction from cultured mycelium of cordyceps sinensis. Food Bioprod Process. 2009;87(2):139–144.
  • Mircioiu C, Voicu V, Anuta V, et al. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics. 2019;11(3):140–145.
  • Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40.
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • Dash S, Murthy PN, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–223.
  • Monti D, Chetoni P, Burgalassi S, et al. Increased corneal hydration induced by potential ocular penetration enhancers: assessment by differential scanning calorimetry (DSC) and by desiccation. Int J Pharm. 2002;232(1–2):139–147.
  • Liu Z, Pan W, Nie S, et al. Preparation and evaluation of sustained ophthalmic gel of enoxacin. Drug Dev Ind Pharm. 2005;31(10):969–975.
  • Liu R, Liu ZB, Zhang C, et al. Gelucire as a novel absorption enhancer for drugs with different hydrophilicities: in-vitro and in-vivo improvement on transcorneal permeation. J Pharm Sci. 2011;100(8):3186–3195.
  • Khale A, Bajaj A. Lipid characterization study in preparation of liposomes of salbutamol sulphate. J Pharm Res. 2011;4(4):1267–1269.
  • Simberg D, Weisman S, Talmon Y, et al. DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit Rev Ther Drug Carrier Syst. 2004;21(4):257–317.
  • Wang F, Chen L, Zhang D, et al. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target. 2014;22(9):849–858.
  • Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv. 1995;70(2):95–111.
  • Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2016;17(3):710–717.
  • Kesharwani P, Md S, Alhakamy NA, et al. QbD enabled azacitidine loaded liposomal nanoformulation and its in vitro evaluation. Polymers. 2021;13(2):250.
  • Moghddam SR, Ahad A, Aqil M, et al. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box–Behnken design for the management of psoriasis. Mater Sci Eng C Mater Biol Appl. 2016;69:789–797.
  • Szoka F Jr., Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.
  • Magarkar A, Dhawan V, Kallinteri P, et al. Cholesterol level affects surface charge of lipid membranes in saline solution. Sci Rep. 2014;4:5005.
  • De Sá FA, Taveira SF, Gelfuso GM, et al. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B Biointerfaces. 2015;133:331–338.
  • Hathout RM, Mansour S, Mortada ND, et al. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2007;8(1):1.
  • Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J. 2007;9(3):E371–E377.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.
  • Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010;17(7):467–489.
  • Ameeduzzafar Alruwaili NK, Imam SS, et al. Formulation of chitosan polymeric vesicles of ciprofloxacin for ocular delivery: Box–Behnken optimization, in vitro characterization, HET-CAM irritation, and antimicrobial assessment. AAPS PharmSciTech. 2020;21(5):167.
  • Baranowski P, Karolewicz B, Gajda M, et al. Ophthalmic drug dosage forms: characterisation and research methods. ScientificWorldJournal. 2014;2014:861904.
  • Lallemand F, Daull P, Benita S, et al. Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb. J Drug Deliv. 2012;2012:604204.
  • Iyamu E, Enobakhare O. pH and osmolality of pre-corneal tear film and commercially available artificial tears. EC Ophthalmol. 2019;10(11):17–25.
  • Barse RK, Tagalpallewar AA, Kokare CR, et al. Formulation and ex vivo–in vivo evaluation of pH-triggered brimonidine tartrate in situ gel for the glaucoma treatment using application of 32 factorial design. Drug Dev Ind Pharm. 2018;44(5):800–807.
  • Dubey A, Prabhu P, Beladiya K, et al. Development and investigation of timolol maleate and latanoprost combination liposomes for the treatment of glaucoma. Int Res J Pharm. 2015;6(4):256–264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.