290
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Applications of bio-predictive dissolution tools for the development of solid oral dosage forms: current industry experience

, &
Pages 79-97 | Received 25 Jul 2021, Accepted 30 Jun 2022, Published online: 13 Jul 2022

References

  • Shono Y, Jantratid E, Kesisoglou F, et al. Forecasting in vivo oral absorption and food effect of micronized and nanosized aprepitant formulations in humans. Eur J Pharm Biopharm. 2010;76(1):95–104.
  • Culen M, Rezacova A, Jampilek J, et al. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine. J Pharm Sci. 2013;102(9):2995–3017.
  • Food and Drug Administration. Guidance for industry: the use of physiologically based pharmacokinetic analyses - biopharmaceutics applications for oral drug product development, manufacturing changes, and controls. 2020.
  • Nguyen MA, Flanagan T, Brewster M, et al. A survey on IVIVC/IVIVR development in the pharmaceutical industry - Past experience and current perspectives. Eur J Pharm Sci. 2017;102:1–13.
  • Food and Drug Administration. Guidance for industry: extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations. 1997.
  • Khaled AAA, Pervaiz K, Karim S, et al. Development of in vitro-in vivo correlation for encapsulated metoprolol tartrate. Acta Poloniae Pharmaceutica. 2013;70:743–747.
  • Jantratid E, Maio VD, Ronda E, et al. Application of biorelevant dissolution tests to the prediction of in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci. 2009;37(3-4):434–441.
  • Turner S, Federici C, Hite M, et al. Formulation development and human in vitro-in vivo correlation for a novel, monolithic controlled-release matrix system of high load and highly water-soluble drug niacin. Drug Dev Ind Pharm. 2004;30(8):797–807.
  • Subburayalu R, Kunchitharatham J, Devi T. Application of biorelevant dissolution tests to the prediction of in vivo performance of clopidogrel extended release mini tablets filled in capsules. Indo Am J Pharmac Res. 2014;4:160–170.
  • Murtaza G, Ahmad M, Akhtar N. Biowaiver study of oral tabletted ethylcellulose microcapsules of a BCS class I drug. Bull Chem Soc Eth. 2009;23(2):175–186.
  • Mendes T, Simon A, Menezes JCV, et al. Development of USP apparatus 3 dissolution method with IVIVC for extended release tablets of metformin hydrochloride and development of a generic formulation. Chem Pharm Bull. 2019;67(1):23–31.
  • Bezerra K, Pinto EC, Cabral LM, et al. Development of a dissolution method for gliclazide modified-release tablets using USP apparatus 3 with in vitro-in vivo correlation. Chem Pharm Bull. 2018;66(7):701–707.
  • Grundy JS, Anderson KE, Rogers JA, et al. Studies on dissolution testing of the nifedipine gastrointestinal therapeutic system. II. Improved in vitro-in vivo correlation using a two-phase dissolution test. J Control Release. 1997;48(1):9–17.
  • Ruiz Picazo A, Martinez-Martinez MT, Colon-Useche S, et al. In vitro dissolution as a tool for formulation selection: telmisartan Two-Step IVIVC. Mol Pharm. 2018;15(6):2307–2315.
  • Emara LH, el-Menshawi BS, Estefan MY. In vitro-in vivo correlation and comparative bioavailablity of vincamine in prolonged-release preparations. Drug Dev Ind Pharm. 2000;26(3):243–251.
  • Mahayni H, Rekhi GS, Uppoor RS, et al. Evaluation of "external" predictability of an in vitro-in vivo correlation for an extended-release formulation containing metoprolol tartrate. J Pharm Sci. 2000;89(10):1354–1361.
  • Kakhi M, Marroum P, Chittenden J. Analysis of level a in vitro-in vivo correlations for an extended-release formulation with limited bioavailability. Biopharm Drug Dispos. 2013;34(5):262–277.
  • Ghosh A, Bhaumik UK, Bose A, et al. Extended release dosage form of glipizide: development and validation of a level a in vitro-in vivo correlation. Biol Pharm Bull. 2008;31(10):1946–1951.
  • Takka S, Sakr A, Goldberg A. Development and validation of an in vitro-in vivo correlation for buspirone hydrochloride extended release tablets. J Control Release. 2003;88(1):147–157.
  • Sarfraz M, Ahmad M, Sarfraz A. A systematic approach to develop level a, in-vitro and in-vivo correlation (IVIVC)-ketoprofen bcs class II drug example. Paki J Sci Industr Res. 2012;55(1):15–26.
  • Dutta S, Qiu Y, Samara E, et al. Once-a-day extended-release dosage form of divalproex sodium III: development and validation of a level a in vitro-in vivo correlation (IVIVC). J Pharm Sci. 2005;94(9):1949–1956.
  • Eddington ND, Marroum P, Uppoor R, et al. Development and internal validation of an in vitro-in vivo correlation for a hydrophilic metoprolol tartrate extended release tablet formulation. Pharm Res. 1998;15(3):466–473.
  • Patel N, Turner D, Polak S, et al. Mechanistic deconvolution using the ADAM Model: part 1. Establishing mechanistic IVIVC for controlled release formulations of the high extraction BCS Class I drug metoprolol: comparison with conventional IVIVC models. AAPS Annual Meeting and Exposition. 2012.
  • Eddington ND. In vitro in vivo correlation with metoprolol extended release tablets using two different releasing formulations: an internal validation evaluation. Inter J Generic Drugs IVIVC Series Part I. 2000;3:417–429.
  • Sirisuth N, Eddington ND. Systematic method for the development and validation of an IVIVC metoprolol and naproxen drug examples. Inter J Generic Drugs IVIVC Series Part III. 2001;4:250–258.
  • Sirisuth N, Augsburger LL, Eddington ND. Development and validation of a non-linear IVIVC model for a diltiazem extended release formulation. Biopharm Drug Dispos. 2002;23(1):1–8.
  • Yamashita F, Fujita A, Zhang X, et al. Computer-based evolutionary search for a nonlinear conversion function for establishing in vitro-in vivo correlation (IVIVC) of oral drug formulations. Drug Metab Pharmacokinet. 2012;27(3):280–285.
  • Mirza T, Bykadi SA, Ellison CD, et al. Use of in vitro-in vivo correlation to predict the pharmacokinetics of several products containing a BCS class 1 drug in extended release matrices. Pharm Res. 2013;30(1):179–190.
  • Soto E, Haertter S, Koenen-Bergmann M, et al. Population in vitro-in vivo correlation model for pramipexole slow-release oral formulations. Pharm Res. 2010;27(2):340–349.
  • Kortejarvi H, Malkki J, Marvola M, et al. Level a in vitro-in vivo correlation (IVIVC) model with bayesian approach to formulation series. J Pharm Sci. 2006;95(7):1595–1605.
  • Mohamed M-EF, Trueman S, Othman AA, et al. Development of in Vitro-In vivo correlation for upadacitinib Extended-Release tablet formulation. Aaps J. 2019;21(6):1–9.
  • Mittapalli RK, Nuthalapati S, Delke DeBord AE, et al. Development of a level a in vitro-in vivo correlation for veliparib (ABT-888) extended release tablet formulation. Pharm Res. 2017;34(6):1187–1192.
  • Xu J, Lin Y, Zawaneh PN, et al. Prediction of in vivo performance of oral extended release formulations prior to clinical evaluation: a case study for enteric coated polymeric beads formulation. Eur J Pharm Biopharm. 2021;158:222–232.
  • Vuletic L, Khan MZI, Spoljaric D, et al. Development of a clinically relevant dissolution method for metaxalone immediate release formulations based on an IVIVC model. Pharm Res. 2018;35(8):1–13.
  • Kesisoglou F, Chung J, van Asperen J, et al. Physiologically based absorption modeling to impact biopharmaceutics and formulation strategies in drug Development-Industry case studies. J Pharm Sci. 2016;105(9):2723–2734.
  • Kesisoglou F, Mitra A. Application of absorption modeling in rational design of drug product under quality-by-Design paradigm. Aaps J. 2015;17(5):1224–1236.
  • European Medicines Agency. Guideline on quality of oral modified release products. 2014.
  • Ilic M, Djuris J, Kovacevic I, et al. In vitro - in silico - in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: nifedipine osmotic release tablets case study. Eur J Pharm Sci. 2014;62:212–218.
  • Kambayashi A, Dressman JB. An in vitro-in silico-in vivo approach to predicting the oral pharmacokinetic profile of salts of weak acids: case example dantrolene. Eur J Pharm Biopharm. 2013;84(1):200–207.
  • Jamei M, Abrahamsson B, Brown J, et al. Current status and future opportunities for incorporation of dissolution data in PBPK modeling for pharmaceutical development and regulatory applications: OrBiTo consortium commentary. Eur J Pharm Biopharm. 2020;155:55–68.
  • Juenemann D, Jantratid E, Wagner C, et al. Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles. Eur J Pharm Biopharm. 2011;77(2):257–264.
  • Litou C, Patel N, Turner DB, et al. Combining biorelevant in vitro and in silico tools to simulate and better understand the in vivo performance of a nano-sized formulation of aprepitant in the fasted and fed states. Eur J Pharm Sci. 2019;138:105031.
  • Kostewicz ES, Abrahamsson B, Brewster M, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–366.
  • Butler J, Hens B, Vertzoni M, et al. In vitro models for the prediction of in vivo performance of oral dosage forms: recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019;136:70–83.
  • Takano R, Sugano K, Higashida A, et al. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm Res. 2006;23(6):1144–1156.
  • Lu ATK, Frisella ME, Johnson KC. Dissolution modeling: factors affecting the dissolution rates of polydisperse powders. Pharm Res. 1993;10(9):1308–1314.
  • Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Inter J Pharma. 1989;51(1):9–17.
  • Kesisoglou F, Wu Y. Understanding the effect of API properties on bioavailability through absorption modeling. AAPS J. 2008;10(4):516–525.
  • Mitra A, Zhu W, Kesisoglou F. Physiologically based absorption modeling for amorphous solid dispersion formulations. Mol Pharm. 2016;13(9):3206–3215.
  • Food and Drug Administration. Guidance for Industry: food-effect bioavailability and fed bioequivalence studies. 2002.
  • O'Shea JP, Holm R, O'Driscoll CM, et al. Food for thought: formulating away the food effect - a PEARRL review. J Pharm Pharmacol. 2019;71(4):510–535.
  • European Medicines Agency. Guideline on the investigation of drug interactions. 2013.
  • Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.
  • Fleisher D, Li C, Zhou Y, et al. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin Pharmacokinet. 1999;36(3):233–254.
  • Heimbach T, Xia B, Lin T-h, et al. Case studies for practical food effect assessments across BCS/BDDCS class compounds using in silico, in vitro, and preclinical in vivo data. AAPS J. 2013;15(1):143–158.
  • Gu CH, Li H, Levons J, et al. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res. 2007;24(6):1118–1130.
  • Mathias N, Xu Y, Vig B, et al. Food effect in humans: predicting the risk through in vitro dissolution and in vivo pharmacokinetic models. AAPS J. 2015;17(4):988–998.
  • Wagner C, Jantratid E, Kesisoglou F, et al. Predicting the oral absorption of a poorly soluble, poorly permeable weak base using biorelevant dissolution and transfer model tests coupled with a physiologically based pharmacokinetic model. Eur J Pharm Biopharm. 2012;82(1):127–138.
  • Kostewicz ES, Wunderlich M, Brauns U, et al. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56(1):43–51.
  • Sauron R, Wilkins M, Jessent V, et al. Absence of a food effect with a 145 mg nanoparticle fenofibrate tablet formulation. Int J Clin Pharmacol Ther. 2006;44(2):64–70.
  • Majumdar AK, Howard L, Goldberg MR, et al. Pharmacokinetics of aprepitant after single and multiple oral doses in healthy volunteers. J Clin Pharmacol. 2006;46(3):291–300.
  • Klein S. The mini paddle apparatus- a useful tool in the early developmental stage? Experiences with immediate-release dosage forms. Dissolution Technol. 2006;13(4):6–11.
  • Berlin M, Przyklenk K-H, Richtberg A, et al. Prediction of oral absorption of cinnarizine - A highly supersaturating poorly soluble weak base with borderline permeability. Eur J Pharm Biopharm. 2014;88(3):795–806.
  • Shono Y, Jantratid E, Janssen N, et al. Prediction of food effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with physiologically based pharmacokinetic modeling. Eur J Pharm Biopharm. 2009;73(1):107–114.
  • Zhang H, Xia B, Sheng J, et al. Application of physiologically based absorption modeling to formulation development of a low solubility, low permeability weak base: mechanistic investigation of food effect. AAPS PharmSciTech. 2014;15(2):400–406.
  • Schug BS, Brendel E, Wonnemann M, et al. Dosage form-related food interaction observed in a marketed once-daily nifedipine formulation after a high-fat American breakfast. Eur J Clin Pharmacol. 2002;58(2):119–125.
  • Patel N, Polak S, Jamei M, et al. Quantitative prediction of formulation-specific food effects and their population variability from in vitro data with the physiologically-based ADAM model: a case study using the BCS/BDDCS class II drug nifedipine. Eur J Pharm Sci. 2014;57:240–249.
  • Andreas CJ, Tomaszewska I, Muenster U, et al. Can dosage form-dependent food effects be predicted using biorelevant dissolution tests? Case example extended release nifedipine. Eur J Pharm Biopharm. 2016;105:193–202.
  • Paraiso RLM, Watanabe A, Andreas CJ, et al. In-vitro-in-silico investigation of the negative food effect of zolpidem when administered as immediate-release tablets. J Pharm Pharmacol. 2019;71(11):1663–1676.
  • Andreas CJ, Pepin X, Markopoulos C, et al. Mechanistic investigation of the negative food effect of modified release zolpidem. Eur J Pharm Sci. 2017;102:284–298.
  • Borbas E, Kadar S, Tsinman K, et al. Prediction of bioequivalence and food effect using flux- and Solubility-Based methods. Mol Pharm. 2019;16(10):4121–4130.
  • Ikeuchi SY, Kambayashi A, Kojima H, et al. Prediction of the oral pharmacokinetics and food effects of gabapentin enacarbil. Biol Pharm Bull. 2018;41(11):1708–1715.
  • Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. Aaps J. 2010;12(3):397–406.
  • Charman WN, Rogge MC, Boddy AW, et al. Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J Clin Pharmacol. 1993;33(4):381–386.
  • Lentz KA. Current methods for predicting human food effect. AAPS J. 2008;10(2):282–288.
  • Klein CE, Chiu Y-L, Awni W, et al. The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the Soft-Gelatin capsule formulation with less pharmacokinetic variability and diminished food effect. JAIDS. J Acquir Immune Defic Syndr. 2007;44(4):401–410.
  • Perlman ME, Murdande SB, Gumkowski MJ, et al. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int J Pharm. 2008;351(1-2):15–22.
  • Mitra A, Kesisoglou F. Impaired drug absorption due to high stomach pH: a review of strategies for mitigation of such effect to enable pharmaceutical product development. Mol Pharm. 2013;10(11):3970–3979.
  • Biswas S, Benedict SH, Lynch SG, et al. Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis. BMC Med. 2012;10:57.
  • Lake-Bakaar G, Tom W, Lake-Bakaar D, et al. Gastropathy and ketoconazole malabsorption in the acquired immunodeficiency syndrome (AIDS). Ann Intern Med. 1988;109(6):471–473.
  • Smelick GS, Heffron TP, Chu L, et al. Prevalence of Acid-Reducing agents (ARA) in cancer populations and ARA Drug-Drug interaction potential for molecular targeted agents in clinical development. Mol Pharm. 2013;10(11):4055–4062.
  • Food and Drug Administration. Guidance for industury (Draft): evaluation of gastric ph-dependent drug interactions with acid-reducing agents: study design, data analysis, and clinical implications. 2021.
  • Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother. 1995;39(8):1671–1675.
  • Russell TL, Berardi RR, Barnett JL, et al. pH-related changes in the absorption of dipyridamole in the elderly. Pharm Res. 1994;11(1):136–143.
  • Dodd S, Kollipara S, Sanchez-Felix M, et al. Prediction of ARA/PPI Drug-Drug interactions at the drug discovery and development interface. J Pharm Sci. 2019;108(1):87–101.
  • Kou D, Dwaraknath S, Fischer Y, et al. Biorelevant dissolution models for a weak base to facilitate formulation development and overcome reduced bioavailability caused by hypochlordyria or achlorhydria. Mol Pharm. 2017;14(10):3577–3587.
  • Matsui K, Tsume Y, Amidon GE, et al. In vitro dissolution of fluconazole and dipyridamole in gastrointestinal simulator (GIS), predicting in vivo dissolution and Drug-Drug interaction caused by Acid-Reducing agents. Mol Pharm. 2015;12(7):2418–2428.
  • Gu CH, Rao D, Gandhi RB, et al. Using a novel multicompartment dissolution system to predict the effect of gastric pH on the oral absorption of weak bases with poor intrinsic solubility. J Pharm Sci. 2005;94(1):199–208.
  • Dickinson PA, Rmaileh RA, Ashworth L, et al. An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. AAPS J. 2012;14(2):196–205.
  • Mitra A, Kesisoglou F, Beauchamp M, et al. Using absorption simulation and gastric pH modulated dog model for formulation development to overcome achlorhydria effect. Mol Pharm. 2011;8(6):2216–2223.
  • Mudie DM, Murray K, Hoad CL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–3047.
  • Wagner JG, Nelson E. Kinetic analvsis of blood levels and urinarv excretion in the absorptive phase after single doses of drug. J Pharm Sci. 1964;53:1392–1403.
  • Riegelman S, Loo JC, Rowland M. Shortcomings in pharmacokinetic analysis by conceiving the body to exhibit properties of a single compartment. J Pharm Sci. 1968;57(1):117–123.
  • Loo JC, Riegelman S. New method for calculating the intrinsic absorption rate of drugs. J Pharm Sci. 1968;57(6):918–928.
  • Kakhi M, Chittenden J. Modeling of pharmacokinetic systems using stochastic deconvolution. J Pharm Sci. 2013;102(12):4433–4443.
  • Kakhi M, Suarez-Sharp S, Shepard T, et al. Application of an NLME-Stochastic deconvolution approach to level a IVIVC modeling. J Pharm Sci. 2017;106(7):1905–1916.
  • Xu J, Lin Y, Boulas P, et al. Low colonic absorption drugs: risks and opportunities in the development of oral extended release products. Expert Opin Drug Deliv. 2018;15(2):197–211.
  • Pepin XJH, Flanagan TR, Holt DJ, et al. Justification of drug product dissolution rate and drug substance particle size specifications based on absorption PBPK modeling for lesinurad immediate release tablets. Mol Pharm. 2016;13(9):3256–3269.
  • Hermans A, Abend AM, Kesisoglou F, et al. Approaches for establishing clinically relevant dissolution specifications for immediate release solid oral dosage forms. Aaps J. 2017;19(6):1537–1549.
  • Food and Drug Administration. Guidance for industry: immediate release solid oral dosage forms. scale-up and postapproval changes: chemistry, manufacturing, and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. 1995.
  • Food and Drug Administration. Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products - general considerations. 2003.
  • Food and Drug Administration. Guidance for industry: bioavailability and bioequivalence studies submitted in NDAS or INDS - general considerations. 2014.
  • Crison JR, Timmins P, Keung A, et al. Biowaiver approach for biopharmaceutics classification system class 3 compound metformin hydrochloride using in silico modeling. J Pharm Sci. 2012;101(5):1773–1782.
  • Sperry DC, Thomas SJ, Lobo E. Dissolution modeling of bead formulations and predictions of bioequivalence for a highly soluble, highly permeable drug. Mol Pharm. 2010;7(5):1450–1457.
  • Mitra A, Kesisoglou F, Dogterom P. Application of absorption modeling to predict bioequivalence outcome of two batches of etoricoxib tablets. AAPS PharmSciTech. 2015;16(1):76–84.
  • Xu J, Naik H, Lin Y, et al. Development of a mechanistic absorption model to bridge late stage formulation for a BCS class II drug candidate. AAPS Annual Meeting and Exposition2019.
  • Rebeka J, Jerneja O, Igor L, et al. PBPK absorption modeling of food effect and bioequivalence in fed state for two formulations with crystalline and amorphous forms of BCS 2 class drug in generic drug development. AAPS PharmSciTech. 2019;20(2):1–10.
  • Grbic S, Parojcic J, Ibric S, et al. In vitro-in vivo correlation for gliclazide immediate-release tablets based on mechanistic absorption simulation. AAPS PharmSciTech. 2011;12(1):165–171.
  • Kovacevic I, Parojcic J, Homsek I, et al. Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation. Mol Pharm. 2009;6(1):40–47.
  • Saibi Y, Sato H, Tachiki H. Developing in vitro-in vivo correlation of risperidone immediate release tablet. AAPS PharmSciTech. 2012;13(3):890–895.
  • Honório T, Pinto EC, Rocha HVA, et al. In vitro-in vivo correlation of efavirenz tablets using GastroPlus. AAPS PharmSciTech. 2013;14(3):1244–1254.
  • Food and Drug Administration. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. 2017.
  • Food and Drug Administration. Waiver of In vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. 2000.
  • European Medicines Agency. Reflection paper on the dissolution specification for generic solid oral immediate release products with systemic action. 2017.
  • European Medicines Agency. ICH M9 guideline on biopharmaceutics classification system-based biowaivers 2020.
  • Davit BM, Kanfer I, Tsang YC, et al. BCS biowaivers: similarities and differences among EMA, FDA, and WHO requirements. Aaps J. 2016;18(3):612–618.
  • Food and Drug Administration. Guidance for industry: SUPAC-MR, modified release solid oral dosage forms. 1997.
  • Delvadia PR. Biowaiver Approaches for solid oral dosage forms in new drug applications. PQRI BTC Webinar 2018.
  • Amidon GL, Lennernäs H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–420.
  • Khames A. Investigation of the effect of solubility increase at the main absorption site on bioavailability of BCS class II drug (risperidone) using liquisolid technique. Drug Deliv. 2017;24(1):328–338.
  • Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm Res. 1999;16(12):1883–1887.
  • Sugano K. Fraction of dose absorbed calculation: comparison between analytical solution based on one compartment steady state approximation and dynamic seven compartment model. CBIJ. 2009;9:75–93.
  • Sugano K, Terada K. Rate- and Extent-Limiting factors of oral drug absorption: theory and applications. J Pharm Sci. 2015;104(9):2777–2788.
  • Kataoka M, Itsubata S, Masaoka Y, et al. In vitro dissolution/permeation system to predict the oral absorption of poorly water-soluble drugs: effect of food and dose strength on it. Biol Pharm Bull. 2011;34(3):401–407.
  • Kataoka M, Sugano K, Mathews C, et al. Application of dissolution/permeation system for evaluation of formulation effect on oral absorption of poorly water-soluble drugs in drug development. Pharm Res. 2012;29(6):1485–1494.
  • Sugano K. Chapter 8. Validation of mechanistic models. In: Sugano K, editor. Biopharmaceutics modeling and simulations: theory, practice, methods, and applications. 2012. Hoboken (NJ): John Wiley & Sons, Inc.
  • Gao P, Shi Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble drugs. Aaps J. 2012;14(4):703–713.
  • Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–2572.
  • Hisada N, Takano R, Takata N, et al. Characterizing the dissolution profiles of supersaturable salts, cocrystals, and solvates to enhance in vivo oral absorption. Eur J Pharm Biopharm. 2016;103:192–199.
  • Sun DD, Wen H, Taylor LS. Non-Sink dissolution conditions for predicting product quality and in vivo performance of supersaturating drug delivery systems. J Pharm Sci. 2016;105(9):2477–2488.
  • Mudie DM, Shi Y, Ping H, et al. Mechanistic analysis of solute transport in an in vitro physiological two-phase dissolution apparatus. Biopharm Drug Dispos. 2012;33(7):378–402.
  • Mudie DM, Stewart AM, Rosales JA, et al. In Vitro-In silico tools for streamlined development of acalabrutinib amorphous solid dispersion tablets. Pharmaceutics. 2021;13(8):1257.
  • Xu H, Shi Y, Vela S, et al. Developing quantitative in Vitro-In vivo correlation for fenofibrate Immediate-Release formulations with the biphasic Dissolution-Partition test method. J Pharm Sci. 2018;107(1):476–487.
  • Ding X, Gueorguieva I, Wesley JA, et al. Assessment of in vivo clinical product performance of a weak basic drug by integration of in vitro dissolution tests and physiologically based absorption modeling. Aaps J. 2015;17(6):1395–1406.
  • Polster CS, Wu S-J, Gueorguieva I, et al. Mechanism for enhanced absorption of a solid dispersion formulation of LY2300559 using the artificial stomach duodenum model. Mol Pharm. 2015;12(4):1131–1140.
  • Psachoulias D, Vertzoni M, Goumas K, et al. Precipitation in and supersaturation of contents of the upper small intestine after administration of two weak bases to fasted adults. Pharm Res. 2011;28(12):3145–3158.
  • Jakubiak P, Wagner B, Grimm HP, et al. Development of a unified dissolution and precipitation model and its use for the prediction of oral drug absorption. Mol Pharm. 2016;13(2):586–598.
  • Ruff A, Fiolka T, Kostewicz ES. Prediction of ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. Eur J Pharm Sci. 2017;100:42–55.
  • Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm. 2018;129:222–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.