2,145
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of roll compaction pressure on the properties of high drug-loaded piracetam granules and tablets

ORCID Icon
Pages 425-437 | Received 05 Apr 2022, Accepted 03 Sep 2022, Published online: 16 Sep 2022

References

  • Subirats X, Redón L, Rosés M. Lipophilicity determination of acidic compounds: MEEKC as a reliable high-throughput methodology. Admet Dmpk. 2018;6(2):153–161.
  • Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D1082.
  • Kuhs M, Moore J, Kollamaram G, et al. Predicting optimal wet granulation parameters for extrusion-spheronisation of pharmaceutical pellets using a mixer torque rheometer. Int J Pharm. 2017;517(1–2):19–24.
  • Winblad B. Piracetam: a review of pharmacological properties and clinical uses. CNS Drug Rev. 2005;11(2):169–182.
  • Saevels J, Braekeleer D, Corthout K. J. Piracetam preparations on the belgian market: a comparative study. J Pharm Belg. 2005;60(3):92–96.
  • Briel T, Guebeli R, Bhattarai R, et al. Addressing handling challenges of chemicals by dry granulation. Darmstadt, Germany: Merck KGaA; 2020.
  • Brockbank K, Armstrong B, Clayton J. Measurement and quantification of caking in excipients and food products with emphasis on the non-homogeneous interaction with ambient moisture. Particuology. 2021;56:75–83.
  • Jakubowska E, Ciepluch N. Blend segregation in tablets manufacturing and its effect on drug content uniformity—a review. Pharmaceutics. 2021;13(11):1909.
  • Fábregas JL, Cucala J. New approach to aqueous granulation of highly hydrosoluble drugs. Drug Dev Ind Pharm. 1987;13(7):1217–1227.
  • Potter CB, Kollamaram G, Zeglinski J, et al. Investigation of polymorphic transitions of piracetam induced during wet granulation. Eur J Pharm Biopharm. 2017;119:36–46.
  • Fabbiani FPA, Allan DR, Parsons S, et al. An exploration of the polymorphism of piracetam using high pressure. CrystEngComm. 2005;7(29):179.
  • Fabbiani FPA, Allan DR, David WIF, et al. High-Pressure studies of pharmaceuticals: an exploration of the behavior of piracetam. Crystal Growth & Design. 2007;7(6):1115–1124.
  • Céolin R, Agafonov V, Louër D, et al. Phenomenology of polymorphism, III:p,TDiagram and stability of piracetam polymorphs. J Solid State Chem. 1996;122(1):186–194.
  • Maher A, Seaton CC, Hudson S, et al. Investigation of the solid-state polymorphic transformations of piracetam. Crystal Growth Design. 2012;12(12):6223–6233.
  • Picciochi R, Diogo HP, da Piedade ME. Thermodynamic characterization of three polymorphic forms of piracetam. J Pharm Sci. 2011;100(2):594–603.
  • Boldyrev VV. Mechanochemical modification and synthesis of drugs. J Mater Sci. 2004;39(16/17):5117–5120.
  • Maher A. Crystal transformations and crystallisation methodologies: Polymorphic transformations of piracetam [Doctoral Thesis]. Limerick, Ireland: University of Limerick; 2013.
  • Upadhyay PP, Mishra MK, Ramamurty U, et al. Structure–property correlations in piracetam polytypes. CrystEngComm. 2021;23(5):1226–1233.
  • Kleinebudde P. Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm. 2004;58(2):317–326.
  • Dehont FR, Hervieu PM, Jerome E, et al. Briquetting and granulation by compaction new granulator-compactor for the pharmaceutical industry. Drug Dev Ind Pharm. 1989;15(14–16):2245–2263.
  • Fayed ME, Otten L. Pressure agglomeration methods. Handbook of powder science and technology. New York, USA: Chapman & Hall; 1997.
  • Miller RW. Roller compaction technology. In: Handbook of pharmaceutical granulation technology. Boca Raton (FL): Taylor & Francis Group, LLC; 2005. p. 187–218.
  • Teng Y, Qiu Z, Wen H. Systematical approach of formulation and process development using roller compaction. Eur J Pharm Biopharm. 2009;73(2):219–229.
  • Leuenberger H, Betz G. Granulation process control-production of pharmaceutical granules" the classical batch concept and the problem of scale-up. In: Salman AD, Hounslow MJ, Seville JPK, editors. Elsevier B.V.; 2007, p. 705–733.
  • Taipale-Kovalainen K, Ketolainen J, Korhonen O, et al. Converting a batch based high-shear granulation process to a continuous dry granulation process; a demonstration with ketoprofen tablets. Eur J Pharm Sci. 2020;151:105381.
  • Rehder S, Christensen NP, Rantanen J, et al. High-shear granulation as a manufacturing method for cocrystal granules. Eur J Pharm Biopharm. 2013;85(3 Pt B):1019–1030.
  • Hiestand EN. Mechanical properties of compacts and particles that control tableting success. J Pharm Sci. 1997;86(9):985–990.
  • Zinchuk AV, Mullarney MP, Hancock BC. Simulation of roller compaction using a laboratory scale compaction simulator. Int J Pharm. 2004;269(2):403–415.
  • Farber L, Hapgood KP, Michaels JN, et al. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression. Int J Pharm. 2008;346(1–2):17–24.
  • Iyer RM, Hegde S, Dinunzio J, et al. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Pharm Dev Technol. 2014;19(5):583–592.
  • Mosig J, Kleinebudde P. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation. J Pharm Sci. 2015;104(3):1108–1118.
  • Sun CC, Kleinebudde P. Mini review: mechanisms to the loss of tabletability by dry granulation. Eur J Pharm Biopharm. 2016;106:9–14.
  • Yu J, Xu B, Zhang K, et al. Using a material library to understand the impacts of raw material properties on ribbon quality in roll compaction. Pharmaceutics. 2019;11(12):662.
  • Powtec. Roller compactors for dry granulation. POWTEC Maschinen und Engineering GmbH; 2005.
  • Colorcon. Product Information – Opadry® II: Reconstitution. USA: Colorcon, Inc.; 2015.
  • IMA. Solid-wall pan coater – Coating System GS HT-3 (IMA S.p.A.) Italy: I.M.A. Industria Macchine Automatiche S.p.A.; 2021. [cited 6 Apr 2021]. Available from https://ima.it/pharma/machine/gs-ht-he-hp/.
  • Mohylyuk V, Styliari ID, Novykov D, et al. Assessment of the effect of cellets’ particle size on the flow in a Wurster fluid-bed coater via powder rheology. J D Deliv Sci Tec. 2019;54:101320.
  • Grey RO, Beddow JK. On the hausner ratio and its relationship to some properties of metal powders. Powder Technol. 1969;2(6):323–326.
  • Osei-Yeboah F, Sun CC. Validation and applications of an expedited tablet friability method. Int J Pharm. 2015;484(1–2):146–155.
  • Eur.Ph. European pharmacopeia. 9th edn. ed. Strasbourg: Council of Europe; 2017.
  • Berkenkemper S, Keizer HL, Lindenberg M, et al. Functionality of disintegrants with different mechanisms after roll compaction. Int J Pharm. 2020;584:119434.
  • McKenna A, McCafferty DF. Effect on particle size on the compaction mechanism and tensile strength of tablets. J Pharm Pharmacol. 1982;34(6):347–351.
  • Brudy J, Farrenkopf J, Bultmann J. Influence of roll compaction force on pore structure and surface structure of MCC ribbons and tablets AAPS Annual Meeting and Exposition. Nashville, Tennessee, USA. 2005.
  • Soh JL, Wang F, Boersen N, et al. Utility of multivariate analysis in modeling the effects of raw material properties and operating parameters on granule and ribbon properties prepared in roller compaction. Drug Dev Ind Pharm. 2008;34(10):1022–1035.
  • Herting MG, Klose K, Kleinebudde P. Benchmark of different dry binders for roll compaction/dry granulation. Excipients Actives Pharma. 2008;20:6–7.
  • Mangal H, Kirsolak M, Kleinebudde P. Roll compaction/dry granulation: suitability of different binders. Int J Pharm. 2016;503(1–2):213–219.
  • Ortega-Rivas E. Unit operations of particulate solids: theory and practice. Boca Raton, FL, USA: CRC Press/Taylor & Francis Group; 2012.
  • Saw HY, Davies CE, Paterson AHJ, et al. Correlation between powder flow properties measured by shear testing and hausner ratio. Procedia Eng. 2015;102:218–225.
  • Hildebrandt C, Gopireddy SR, Fritsch AK, et al. Evaluation and prediction of powder flowability in pharmaceutical tableting. Pharm Dev Technol. 2019;24(1):35–47.
  • Freeman T, Vom Bey H, Hanish M, et al. The influence of roller compaction processing variables on the rheological properties of granules. Asian J Pharm Sci. 2016;11(4):516–527.
  • Hou H, Sun CC. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. J Pharm Sci. 2008;97(9):4030–4039.
  • Zettler A, Hilden J, Koenig M, et al. Evaluation of small-scale powder flow characterization tests in the prediction of large-scale process failures. J Pharm Innov. 2016;11(3):189–199.
  • Fell JT, Newton JM. Effect of particle size and speed of compaction on density changes in tablets of crystalline and spray-dried lactose. J Pharm Sci. 1971;60(12):1866–1869.
  • Ishino R, Yoshino H, Hirakawa Y, et al. Influence of tabletting speed on compactibility and compressibility of two direct compressible powders under high speed compression. Chem Pharm Bull. 1990;38(7):1987–1992.
  • Rees JE, Rue PJ. Time-dependent deformation of some direct compression excipients. J Pharm Pharmacol. 1978;30(10):601–607.
  • Skelbæk-Pedersen AL, Vilhelmsen TK, Wallaert V, et al. Investigation of the effects of particle size on fragmentation during tableting. Int J Pharm. 2020;576:118985.
  • Rowlings CE, Wurster DE, Ramsey PJ. Calorimetric analysis of powder compression: II. The relationship between energy terms measured with a compression calorimeter and tableting behavior. Int J Pharm. 1995;116(2):191–200.
  • Coffin-Beach DP, Gary Hollenbeck R. Determination of the energy of tablet formation during compression of selected pharmaceutical powders. Int J Pharm. 1983;17(2–3):313–324.
  • Wurster DE, Rowlings CE, Creekmore JR. Calorimetric analysis of powder compression: I. Design and development of a compression calorimeter. Int J Pharm. 1995;116(2):179–189.
  • Tye CK, Sun CC, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci. 2005;94(3):465–472.
  • Skelbæk-Pedersen AL, Vilhelmsen TK, Rantanen J, et al. The relevance of granule fragmentation on reduced tabletability of granules from ductile or brittle materials produced by roll compaction/dry granulation. Int J Pharm. 2021;592:120035.
  • Mitra B, Chang J, Hilden J, et al. Deformation potential and tensile strength of tablets of a dry granulated formulation. J Pharm Sci. 2021;111(3):710–716.
  • Hakanen A, Laine E. Acoustic characterization of a microcrystalline cellulose powder during and after its compression. Drug Dev Ind Pharm. 1995;21(13):1573–1582.
  • Chandler HW, Sands CM, Song JH, et al. A plasticity model for powder compaction processes incorporating particle deformation and rearrangement. Int J Solids Struct. 2008;45(7–8):2056–2076.
  • Sun CC. Microstructure of tablet-pharmaceutical significance, assessment, and engineering. Pharm Res. 2017;34(5):918–928.
  • Skelbæk-Pedersen AL, Al-Sharabi M, Vilhelmsen TK, et al. Effect of particle size and deformation behaviour on water ingress into tablets. Int J Pharm. 2020;587:119645.