315
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability

, , &
Pages 1-16 | Received 05 Aug 2022, Accepted 06 Dec 2022, Published online: 28 Feb 2023

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789.
  • Freres P, Jerusalem G, Moonen M. Categories of anticancer treatments. Anti-cancer treatments and cardiotoxicity. Amsterdam, Netherlands: Elsevier; 2017. p. 7–11.
  • Benjamin B. Cytotoxic drugs. Introduction to basics of pharmacology and toxicology. Singapore: Springer Singapore; 2021. p. 1077–1090.
  • Tran P, Pyo YC, Kim DH, et al. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly Water-Soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):132.
  • Borner M, Scheithauer W, Twelves C, et al. Answering patients’ needs: oral alternatives to intravenous therapy. The Oncologist. 2001;6(S4):12–16.
  • Fallowfield L, Atkins L, Catt S, et al. Patients’ preference for administration of endocrine treatments by injection or tablets: results from a study of women with breast cancer. Ann Oncol. 2006;17(2):205–210.
  • Rogala BG, Charpentier MM, Nguyen MK, et al. Oral anticancer therapy: management of drug interactions. J Oncol Pract. 2019;15(2):81–90.
  • Shinde P, Badgujar HF, Kumar U. Strategies to improve oral delivery of natural anticancer molecules. Emerging trends in nanomedicine. Singapore: Springer Singapore; 2021. p. 25–50.
  • Zhang RX, Dong K, Wang Z, et al. Nanoparticulate drug delivery strategies to address intestinal cytochrome P450 CYP3A4 metabolism towards personalized medicine. Pharmaceutics. 2021;13(8):1261.
  • Zhang H, Xu H, Ashby CR, et al. Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp). Med Res Rev. 2021;41(1):525–555.
  • van der Merwe J, Steenekamp J, Steyn D, et al. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics. 2020;12(5):393.
  • Jain AK, Jain S. Advances in oral delivery of anti-cancer prodrugs. Expert Opin Drug Deliv. 2016;13(12):1759–1775.
  • Thanki K, Gangwal RP, Sangamwar AT, et al. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15–40.
  • Mei L, Zhang Z, Zhao L, et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev. 2013;65(6):880–890.
  • Kumar S, Dilbaghi N, Saharan R, et al. Nanotechnology as emerging tool for enhancing solubility of poorly Water-Soluble drugs. BioNanoSci. 2012;2(4):227–250.
  • Malaviya P, Shukal D, Vasavada AR. Nanotechnology-based drug delivery, metabolism and toxicity. Curr Drug Metab. 2019;20(14):1167–1190.
  • Zhang N., Zhang.   How nanotechnology can enhance docetaxel therapy. Int J Nanomedicine. 2013;8:2927–2941.
  • Kou L, Sun R, Bhutia YD, et al. Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin Drug Deliv. 2018;15(9):869–879.
  • Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm. 2013;441(1–2):202–212.
  • Nguyen TX, Huang L, Gauthier M, et al. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond). 2016;11(9):1169–1185.
  • Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17(17–18):1044–1052.
  • Gupta M, Sharma V, Chauhan NS. Nanotechnology for oral delivery of anticancer drugs: an insight potential. Nanostructures for oral medicine. Amsterdam, Netherlands: Elsevier; 2017. p. 467–510.
  • Shahbazi MA, Santos H. Improving oral absorption via Drug-Loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Current Drug Metabolism. 2013;14(1):28–56.
  • Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv. 2015;12(7):1121–1133.
  • Alshahrani SM, Alshetaili AS, Alalaiwe A, et al. Anticancer efficacy of self-nanoemulsifying drug delivery system of sunitinib malate. AAPS PharmSciTech. 2018;19(1):123–133.
  • Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: general considerations. Drug Discov Today. 2013;18(1–2):25–34.
  • B. Shekhawat P, B. Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B. 2017;7(3):260–280.
  • Ghadi R, Dand N. BCS class IV drugs: highly notorious candidates for formulation development. J Control Release. 2017;248:71–95.
  • Pharmacokinetic considerations and challenges in oral anticancer drug therapy. Pharm J. 2019;11(6):1–14.
  • Dey M, Das M, Chowhan A, et al. Breaking the barricade of oral chemotherapy through polysaccharide nanocarrier. Int J Biol Macromol. 2019;130:34–49.
  • Singh B, Bandopadhyay S, Kapil R, et al. Self-Emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst. 2009;26(5):427–521.
  • Shakeel F, Iqbal M, Ezzeldin E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system. J Pharm Pharmacol. 2016;68(6):772–780.
  • Nanjwade BK, Patel DJ, Udhani RA, et al. Functions of lipids for enhancement of oral bioavailability of poorly Water-Soluble drugs. Sci Pharm. 2011;79(4):705–727.
  • Solans C, Morales D, Homs M. Spontaneous emulsification. Curr Opin Colloid Interface Sci. 2016;22:88–93.
  • Agrawal S, Giri TK, Tripathi DK, et al. A review on novel therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid and surfactant based self micro emulsifying drug delivery system: a novel approach. Am J Drug Discov Dev. 2012;2(4):143–183.
  • Solè I, Solans C, Maestro A, et al. Study of nano-emulsion formation by dilution of microemulsions. J Colloid Interface Sci. 2012;376(1):133–139.
  • Shafiq S, Shakeel F, Talegaonkar S, et al. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227–243.
  • Khan AW, Kotta S, Ansari SH, et al. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin Drug Deliv. 2012;9(10):1305–1317.
  • Chime SA. Nanoemulsions—advances in formulation, characterization and applications in drug delivery. 2014;3:77–126.
  • Date AA, Desai N, Dixit R, et al. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond). 2010;5(10):1595–1616.
  • Rehman FU, Shah KU, Shah SU, et al. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin Drug Deliv. 2017;14(11):1325–1340.
  • Kuruvila FS, Mathew F, Kuppuswamy S. Solid self nanoemulsifying drug delivery system (snedds) devolopment, applications and future perspective: a review. IAJPS. 2017;4:651–669.
  • Parakh D. Self micro-emulsifying drug delivery system: approach to improve solubility and permeability. Int J Inst Pharm Life Sci. 2015;5:21–37.
  • Maurya SD, Arya RK, Rajpal G, et al. Self-micro emulsifying drug delivery systems (SMEDDS): a review on physico-chemical and biopharmaceutical aspects. J Drug Delivery Ther. 2017;7(3):55.
  • Gurram A, Deshpande P, Kar S, et al. Role of components in the formation of self-microemulsifying drug delivery systems. Indian J Pharm Sci. 2015;77(3):249–257.
  • Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–230.
  • Odeberg JM, Kaufmann P, Kroon K-G, et al. Lipid drug delivery and rational formulation design for lipophilic drugs with low oral bioavailability, applied to cyclosporine. Eur J Pharm Sci. 2003;20(4–5):375–382.
  • Zhao Y, Wang C, Chow AHL, et al. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of zedoary essential oil: formulation and bioavailability studies. Int J Pharm. 2010;383(1–2):170–177.
  • Hauss DJ, Fogal SE, Ficorilli J. V, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87(2):164–169.
  • Kimura M, Shizuki M, Miyoshi K, et al. Relationship between the molecular structures and emulsification properties of edible oils. Biosci Biotechnol Biochem. 1994;58(7):1258–1261.
  • Kassem AA, Marzouk MA, Ammar AA. Preparation and in vitro evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) containing clotrimazole. Drug Discov Ther. 2010;4:373–379.
  • Himaja M, Gupta V, Ankit KY. A review on self-nano-emulsifying drug delivery system. Int J Emerg Technol Innov Res. 2018;5:25–37.
  • Murthy PN, Kumar Mahapatra A, Swadeep B, et al. Self-emulsifying drug delivery systems (SEDDS): an update from formulation development to therapeutic strategies. Int J PharmTech Res. 2014:6:546–568.
  • Kaushik D. Recent developments in self-microemulsifying drug delivery system: an overview. Asian J Pharm. 2020;13:59–72.
  • Akiladevi D, Prakash H, Biju G, et al. Nano-novel approach: self nano emulsifying drug delivery system (SNEDDS)-review article. Res J Pharm Technol. 2020;13(2):983.
  • Čerpnjak K, Zvonar A, Gašperlin M, et al. Lipid-based systems as promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 2013;63(4):427–445.
  • Gutiérrez JM, González C, Maestro A, et al. Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci. 2008;13(4):245–251.
  • Rani S, Rana R, Saraogi GK, et al. Self-Emulsifying oral lipid drug delivery systems: advances and challenges. AAPS PharmSciTech. 2019;20(3):129.
  • Buckley ST, Frank KJ, Fricker G, et al. Biopharmaceutical classification of poorly soluble drugs with respect to “enabling formulations. Eur J Pharm Sci. 2013;50(1):8–16.
  • Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, et al. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv. 2016;23(9):3639–3652.
  • Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–287.
  • Buya AB, Beloqui A, Memvanga PB, et al. Self-nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12(12):1194.
  • Zhang L, Zhang L, Zhang M, et al. Self-emulsifying drug delivery system and the applications in herbal drugs. Drug Deliv. 2015;22(4):475–486.
  • Yoo J, Baskaran R, Yoo B-K. Self-Nanoemulsifying drug delivery system of lutein: physicochemical properties and effect on bioavailability of warfarin. Biomol Ther (Seoul). 2013;21(2):173–179.
  • Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, Peng X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Intern J Nanomed. 2011;683-92. 
  • Keskin Gündoğdu T, Deniz İ, Çalışkan G, et al. Experimental design methods for bioengineering applications. Crit Rev Biotechnol. 2016;36(2):368–388.
  • Homayouni Rad A, Pirouzian HR, Toker OS, et al. Application of simplex lattice mixture design for optimization of sucrose-free milk chocolate produced in a ball mill. LWT. 2019;115:108435.
  • Cunha S, Costa CP, Moreira JN, et al. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: a review. Nanomedicine. 2020;28:102206.
  • de Aguiar PF, Bourguignon B, Khots MS, et al. D-optimal designs. Chemometr Intelligent Lab Syst. 1995;30(2):199–210.
  • Talekar SD, Haware R. V, Dave RH. Evaluation of self-nanoemulsifying drug delivery systems using multivariate methods to optimize permeability of captopril oral films. Eur J Pharm Sci. 2019;130:215–224.
  • Sharma G, Wilson K, van der Walle CF, et al. Microemulsions for oral delivery of insulin: design, development and evaluation in streptozotocin induced diabetic rats. Eur J Pharm Biopharm. 2010;76(2):159–169.
  • Goddeeris C, Cuppo F, Reynaers H, et al. Light scattering measurements on microemulsions: estimation of droplet sizes. Int J Pharm. 2006;312(1–2):187–195.
  • Wang L, Dong J, Chen J, et al. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443–448.
  • Chamieh J, Merdassi H, Rossi JC, et al. Size characterization of lipid-based self-emulsifying pharmaceutical excipients during lipolysis using Taylor dispersion analysis with fluorescence detection. Int J Pharm. 2018;537(1–2):94–101.
  • Phillies GDJ. Interpretation of fluorescence correlation spectra of biopolymer solutions. Biopolymers. 2016;105(5):260–266.
  • Gershanik T, Benita S. Positively charged self-emulsifying oil formulation for improving oral bioavailability of progesterone. Pharm Dev Technol. 1996;1(2):147–157.
  • Corbo DC, Liu JC, Chien YW. Characterization of the barrier properties of mucosal membranes. J Pharm Sci. 1990;79(3):202–206.
  • Netsomboon K, Bernkop-Schnürch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm. 2016;98:76–89.
  • Rajpoot K, Tekade M, Pandey V, et al. Self-microemulsifying drug-delivery system: ongoing challenges and future ahead. Drug delivery systems. Amsterdam, Netherlands: Elsevier; 2020. p. 393–454.
  • Czajkowska-Kośnik A, Szekalska M, Amelian A, et al. Development and evaluation of liquid and solid Self-Emulsifying drug delivery systems for atorvastatin. Molecules. 2015;20(12):21010–21022.
  • Qian J, Meng H, Xin L, et al. Self-nanoemulsifying drug delivery systems of myricetin: formulation development, characterization, and in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2017;160:101–109.
  • Patel J, Dhingani A, Garala K, et al. Quality by design approach for oral bioavailability enhancement of irbesartan by self-nanoemulsifying tablets. Drug Deliv. 2014;21(6):412–435.
  • Mandal S, Mandal SS. Microemulsion drug delivery system: a platform for improving dissolution rate of poorly water soluble drug. PCI- Approved-Ijpsn. 2011;3(4):1214–1219.
  • Bali V, Ali M, Ali J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf B Biointerfaces. 2010;76(2):410–420.
  • Vithani K, Jannin V, Pouton CW, et al. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev. 2019;142:16–34.
  • Rowley G. Filling of liquids and semi-solids into two piece hard capsules. In: Podczeck F, Jones B, editors. Pharmaceutical capsules. 2nd ed. London: Pharmaceutical Press; 2004. p. 169–194.
  • Parikh KJ, Sawant KK. Solubilization of vardenafil HCl in lipid-based formulations enhances its oral bioavailability in vivo: a comparative study using tween - 20 and Cremophor - EL. J Mol Liq. 2019;277:189–199.
  • Gupta S, Chavhan S, Sawant KK. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: design, characterization, in vitro and ex vivo evaluation. Colloids Surf A. 2011;392(1):145–155.
  • Elsheikh MA, Elnaggar YSR, Gohar EY, et al. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. Int J Nanomedicine. 2012;7:3787–3802.
  • Elnaggar YSR, El-Massik MA, Abdallah OY. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int J Pharm. 2009;380(1–2):133–141.
  • Zhuang X, Tian X, Zheng Y, et al. Formulation and physicochemical characterisation of a novel Self-Microemulsifying delivery system as hydrotropic and solubilising agent for penfluridol. Procedia Eng. 2011;18:59–65.
  • Xue X, Cao M, Ren L, et al. Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS PharmSciTech. 2018;19(4):1847–1859.
  • Woo JS, Song YK, Hong JY, et al. Reduced food-effect and enhanced bioavailability of a self-microemulsifying formulation of itraconazole in healthy volunteers. Eur J Pharm Sci. 2008;33(2):159–165.
  • Nepal PR, Han HK, Choi HK. Preparation and in vitro–in vivo evaluation of witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur J Pharm Sci. 2010;39(4):224–232.
  • Singh G, Pai RS. Trans -resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Deliv. 2015;22(4):522–530.
  • Baloch J, Sohail MF, Sarwar HS, et al. Self-Nanoemulsifying drug delivery system (SNEDDS) for improved oral bioavailability of chlorpromazine: in vitro and in vivo evaluation. Medicina (B). 2019;55(5):210.
  • Bhikshpathi DV. Formulation and optimization of fluvastatin loaded self-emulsifying drug delivery systems. Asian J Pharm. 2020;14(3):458–468.
  • Nazzal S, Khan MA. Controlled release of a self-emulsifying formulation from a tablet dosage form: stability assessment and optimization of some processing parameters. Int J Pharm. 2006;315(1–2):110–121.
  • Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv. 2006;3(1):97–110.
  • Usmani A, Mishra A, Arshad M, et al. Development and evaluation of doxorubicin self nanoemulsifying drug delivery system with nigella sativa oil against human hepatocellular carcinoma. Artif Cells Nanomed Biotechnol. 2019;47(1):933–944.
  • Seo YG, Kim DH, Ramasamy T, et al. Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm. 2013;452(1–2):412–420.
  • Akhtartavan S, Karimi M, Karimian K, et al. Evaluation of a self-nanoemulsifying docetaxel delivery system. Biomed Pharmacother. 2019;109:2427–2433.
  • Sandhu PS, Beg S, Mehta F, et al. Novel dietary lipid-based self-nanoemulsifying drug delivery systems of paclitaxel with p-gp inhibitor: implications on cytotoxicity and biopharmaceutical performance. Expert Opin Drug Deliv. 2015;12(11):1809–1822.
  • Beg S, Kaur R, Khurana RK, et al. QbD-Based development of cationic self-nanoemulsifying drug delivery systems of paclitaxel with improved biopharmaceutical attributes. AAPS PharmSciTech. 2019;20(3):118.
  • Osman AAKZH. Enhancement of efficacy and reduced toxicity of cisplatin through self nanoemulsifying drug delivery system (SNEDDS). Int J Pharmacol. 2017;13:292–302.
  • Khalid N, Sarfraz M, Arafat M, et al. Nano-sized droplets of self-emulsifying system for enhancing oral bioavailability of chemotherapeutic agent VP-16 in rats: a nano lipid carrier for BCS class IV drugs. J Pharm Pharm Sci. 2018;21(1):398–408.
  • Nazari-Vanani R, Azarpira N, Heli H, et al. A novel self-nanoemulsifying formulation for sunitinib: evaluation of anticancer efficacy. Colloids Surf B Biointerfaces. 2017;160:65–72.
  • Nottingham E, Sekar V, Mondal A, et al. The role of Self-Nanoemulsifying drug delivery systems of CDODA-Me in sensitizing Erlotinib-Resistant non–small cell lung cancer. J Pharm Sci. 2020;109(6):1867–1882.
  • Heshmati N, Cheng X, Eisenbrand G, et al. Enhancement of oral bioavailability of E804 by Self-Nanoemulsifying drug delivery system (SNEDDS) in rats. J Pharm Sci. 2013;102(10):3792–3799.
  • Prajapati B. Bioavailability enhancement study of BCS class IV drug: snedds approach. Pharm Anal Acta. 2014.
  • Kamel AO, Mahmoud AA. Enhancement of human oral bioavailability and & in vitro; antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system. J Biomed Nanotechnol. 2013;9(1):26–39.
  • Mahmoudian M, Valizadeh H, Löbenberg R, et al. Enhancement of the intestinal absorption of bortezomib by self-nanoemulsifying drug delivery system. Pharm Dev Technol. 2020;25(3):351–358.
  • Shim HJ, Hwang JE, Bae WK, et al. Abstract 2834: antitumor effect of AGM 130 (5’-OH-5-nitro-Indirubin oxime), a cyclin-dependent kinase inhibitor in colorectal cancer cells. Cancer Res. 2016;76(14):2834–2834.
  • Jeevana JB, Sreelakshmi K. Design and evaluation of Self-Nanoemulsifying drug delivery system of flutamide. J Young Pharm. 2011;3(1):4–8.
  • Shakeel F, Haq N, Al-Dhfyan A, et al. Double w/o/w nanoemulsion of 5-fluorouracil for self-nanoemulsifying drug delivery system. J Mol Liq. 2014;200:183–190.
  • Arya A, Ahmad H, Tulsankar S, et al. Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: optimization, in vivo evaluation and uptake mechanism. Mater Sci Eng C Mater Biol Appl. 2017;71:954–964.
  • Izgelov D, Cherniakov I, Aldouby Bier G, et al. The effect of piperine Pro-Nano lipospheres on direct intestinal phase II metabolism: the raloxifene paradigm of enhanced oral bioavailability. Mol Pharm. 2018;15(4):1548–1555.
  • Jain AK, Thanki K, Jain S. Solidified Self-Nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part I. Formulation development, statistical optimization, and in vitro characterization. Pharm Res. 2014;31(4):923–945.
  • Zeng L, Zhang Y. Development, optimization and in vitro evaluation of norcantharidin loadedself-nanoemulsifying drug delivery systems (NCTD-SNEDDS). Pharm Dev Technol. 2017;22(3):399–408.
  • Shukla M, Jaiswal S, Sharma A, et al. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev Ind Pharm. 2017;43(5):847–861.
  • Altamimi MA, Kazi M, Hadi Albgomi M, et al. Development and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for curcumin transdermal delivery: an anti-inflammatory exposure. Drug Dev Ind Pharm. 2019;45(7):1073–1078.
  • Ke Z, Hou X, Jia X. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D. Drug Des Devel Ther. 2016;10:2049–2060.
  • Ahmad N, Ahmad R, Naqvi A, et al. Enhancement of quercetin oral bioavailability by self-nanoemulsifying drug delivery system and their quantification through ultra high performance liquid chromatography and mass spectrometry in cerebral ischemia. Drug Res (Stuttg). 2017;67(10):564–575.
  • Tran TH, Guo Y, Song D, et al. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci. 2014;103(3):840–852.
  • Sharma S, Narang JK, Ali J, et al. Synergistic antioxidant action of vitamin E and rutin SNEDDS in ameliorating oxidative stress in a parkinson’s disease model. Nanotechnology. 2016;27(37):375101.
  • Yanfei M, Guoguang C, Lili R, et al. Controlled release of glaucocalyxin – a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability. Pharm Dev Technol. 2017;22(2):148–155.
  • Kumar R, Khursheed R, Kumar R, et al. Self-nanoemulsifying drug delivery system of fisetin: formulation, optimization, characterization and cytotoxicity assessment. J Drug Deliv Sci Technol. 2019;54:101252.
  • Khan AW, Kotta S, Ansari SH, et al. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015;22(4):552–561.
  • Izham MNM, Hussin Y, Rahim NFC, et al. Physicochemical characterization, cytotoxic effect and toxicity evaluation of nanostructured lipid carrier loaded with eucalyptol. BMC Complement Med Ther. 2021;21(1):254.
  • Ujilestari T, Danar Dono N, Ariyadi B, et al. Formulation and characterization of self-nano emulsifying drug delivery systems of lemongrass (cymbopogon citratus) essential oil. Mal J Fund Appl Sci. 2018;14(3):360–363.
  • Wu GS, Lu JJ, Guo JJ, et al. Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep. 2013;65(2):453–459.
  • Verweij J, Clavel M, Chevalier B. Paclitaxel (TaxolTM) and docetaxel (TaxotereTM): not simply two of a kind. Ann Oncol. 1994;5(6):495–505.
  • Ahn MY, Kim TH, Kwon SM, et al. 5-Nitro-5′-hydroxy-indirubin-3′-oxime (AGM130), an indirubin-3′-oxime derivative, inhibits tumor growth by inducing apoptosis against non-small cell lung cancer in vitro and in vivo. Eur J Pharm Sci. 2015;79:122–131.
  • Eng-Wong J, Zujewski JA. Raloxifene and its role in breast cancer prevention. Expert Rev Anticancer Ther. 2004;4(4):523–532.
  • Khadka NK, Cheng X, Ho CS, et al. Interactions of the anticancer drug tamoxifen with lipid membranes. Biophys J. 2015;108(10):2492–2501.
  • Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24:40.
  • Riddell IA, Lippard SJ. 1. Cisplatin and oxaliplatin: our current understanding of their actions. Berlin, Germany: Metallo-Drugs: Development and Action of Anticancer Agents. De Gruyter; 2018. p. 1–42.
  • van Maanen JMS, Retel J, de Vries J, et al. Mechanism of action of antitumor drug etoposide: a review. J Natl Cancer Inst. 1988;80(19):1526–1533.
  • Ferrari SM, Centanni M, Virili C, et al. Sunitinib in the treatment of thyroid cancer. Curr Med Chem. 2019;26(6):963–972.
  • Paydas S. Management of adverse effects/toxicity of ibrutinib. Crit Rev Oncol Hematol. 2019;136:56–63.
  • Wu GY, Liu JZ, Fang FD, et al. Studies on the mechanism of indirubin action in the treatment of chronic granulocytic leukemia. V. Binding between indirubin and DNA and identification of the type of binding. Sci Sin B. 1982;25(10):1071–1079.
  • Zhu J, Sun Y, Lu Y, et al. Glaucocalyxin a exerts anticancer effect on osteosarcoma by inhibiting GLI1 nuclear translocation via regulating PI3K/akt pathway. Cell Death Dis. 2018;9(6):708.
  • Qiu P, Wang S, Liu M, et al. Norcantharidin inhibits cell growth by suppressing the expression and phosphorylation of both EGFR and c-Met in human Colon cancer cells. BMC Cancer. 2017;17(1):55.
  • Elsayed I, El-Dahmy RM, El-Emam SZ, et al. Response surface optimization of biocompatible elastic nanovesicles loaded with rosuvastatin calcium: enhanced bioavailability and anticancer efficacy. Drug Deliv Transl Res. 2020;10(5):1459–1475.
  • Jiang F, Chen Y, Ren S, et al. Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1-AKT/ERK-Snail signaling pathway. Int J Oncol. 2020;57:183–196.
  • Tan CRC, Abdul-Majeed S, Cael B, et al. Clinical pharmacokinetics and pharmacodynamics of bortezomib. Clin Pharmacokinet. 2019;58(2):157–168.
  • Sarrabay A, Hilmi C, Tinwell H, et al. Low dose evaluation of the antiandrogen flutamide following a mode of action approach. Toxicol Appl Pharmacol. 2015;289(3):515–524.
  • Osguthorpe DJ, Hagler AT. Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer. Biochemistry. 2011;50(19):4105–4113.
  • Jiang M, Zhu M, Wang L, et al. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed Pharmacother. 2019;120:109506.
  • Imran M, Saeed F, Gilani SA, et al. Fisetin: an anticancer perspective. Food Sci Nutr. 2021;9(1):3–16.
  • Balusamy SR, Perumalsamy H, Veerappan K, et al. Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: in silico and in vitro study. BioMed Res Int. 2020;2020:1–15.
  • Zhang YJ, Zhang MF, Zhou HF, et al. Activation of c-Jun/JNK signaling predicts poor prognosis in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 2018;11:2699–2706.
  • Giordano T. Curcumin and cancer. Nutrients. 2019;11(10):2376.
  • Nazari-Vanani R, Moezi L, Heli H. In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin. Biomed Pharmacother. 2017;88:715–720.
  • Rauf A, Imran M, Khan IA, et al. Anticancer potential of quercetin: a comprehensive review. Phytother Res. 2018;32(11):2109–2130.
  • Tripathi S, Kushwah V, Thanki K, et al. Triple antioxidant SNEDDS formulation with enhanced oral bioavailability: implication of chemoprevention of breast cancer. Nanomedicine. 2016;12(6):1431–1443.
  • Pangeni R, Panthi V, Yoon I-S, et al. Preparation, characterization, and in vivo evaluation of an oral multiple nanoemulsive system for Co-Delivery of pemetrexed and quercetin. Pharmaceutics. 2018;10(3):158.
  • Caparica R, Júlio A, Araújo MEM, et al. Anticancer activity of rutin and its combination with ionic liquids on renal cells. Biomolecules. 2020;10(2):233.
  • Memariani Z, Abbas SQ, Ul Hassan SS, et al. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res. 2021;171:105264.
  • Casey SC, Amedei A, Aquilano K, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;35:s199–S223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.