162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Crisaborole loaded nanoemulgel for the mitigation of atopic dermatitis in mice model

, , , , , & show all
Pages 521-535 | Received 11 Mar 2023, Accepted 30 Jul 2023, Published online: 11 Aug 2023

References

  • Archer CB. Atopic eczema. Medicine. 2013;41(6):341–344. doi: 10.1016/j.mpmed.2013.04.002.
  • Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol. 2000;105(5):860–876. doi: 10.1067/mai.2000.106484.
  • Kim J, Kim BE, Leung DY. Pathophysiology of atopic dermatitis: clinical implications. Allergy Asthma Proc. 2019;40(2):84–92. editors OceanSide Publications. doi: 10.2500/aap.2019.40.4202.
  • Wang A, Xu Landén N. New insights into T cells and their signature cytokines in atopic dermatitis. IUBMB Life. 2015;67(8):601–610. doi: 10.1002/iub.1405.
  • Pariser D. Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: focus on percutaneous absorption. Am J Ther. 2009;16(3):264–273. doi: 10.1097/MJT.0b013e31818a975c.
  • Kader HA, Azeem M, Jwayed SA, et al. Current insights into immunology and novel therapeutics of atopic dermatitis. Cells. 2021;10(6):1392. doi: 10.3390/cells10061392.
  • Guttman‐Yassky E, Hanifin JM, Boguniewicz M, et al. The role of phosphodiesterase 4 in the pathophysiology of atopic dermatitis and the perspective for its inhibition. Exp Dermatol. 2019;28(1):3–10.
  • Nygaard U, Deleuran M, Vestergaard C. Emerging treatment options in atopic dermatitis: topical therapies. Dermatology. 2017;233(5):333–343. doi: 10.1159/000484407.
  • Dina Coronado B, Zane LT, Coronado D. Crisaborole topical ointment, 2%: a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis. J Drugs Dermatol. 2016;15(4):390–396.
  • Fernandes GFS, Denny WA, Dos Santos JL. Boron in drug design: recent advances in the development of new therapeutic agents. Eur J Med Chem. 2019;179:791–804. doi: 10.1016/j.ejmech.2019.06.092.
  • Paller AS, Kabashima K, Bieber T. Therapeutic pipeline for atopic dermatitis: end of the drought? J Allergy Clin Immunol. 2017;140(3):633–643. doi: 10.1016/j.jaci.2017.07.006.
  • Chu Z, Xu Q, Zhu Q, et al. Design, synthesis and biological evaluation of novel benzoxaborole derivatives as potent PDE4 inhibitors for topical treatment of atopic dermatitis. Eur J Med Chem. 2021;213:113171. doi: 10.1016/j.ejmech.2021.113171.
  • Ahluwalia J, Udkoff J, Waldman A, et al. Phosphodiesterase 4 inhibitor therapies for atopic dermatitis: progress and outlook. Drugs. 2017;77(13):1389–1397. doi: 10.1007/s40265-017-0784-3.
  • Bhutani P, Joshi G, Raja N, et al. US FDA approved drugs from 2015–June 2020: a perspective. J Med Chem. 2021;64(5):2339–2381. doi: 10.1021/acs.jmedchem.0c01786.
  • Cheape AC, Murrell DF. 2% Crisaborole topical ointment for the treatment of mild-to-moderate atopic dermatitis. Expert Rev Clin Immunol. 2017;13(5):415–423. doi: 10.1080/1744666X.2017.1304820.
  • Paton DM. Crisaborole: phosphodiesterase inhibitor for treatment of atopic dermatitis. Drugs Today. 2017;53(4):239–245.
  • Zane L, Chanda S, Jarnagin K, et al. Crisaborole and its potential role in treating atopic dermatitis: overview of early clinical studies. Immunotherapy. 2016;8(8):853–866. doi: 10.2217/imt-2016-0023.
  • Roy P, Ghosh A. Progress on cocrystallization of poorly soluble NME's in the last decade. CrystEngComm. 2020;22(42):6958–6974. doi: 10.1039/D0CE01276A.
  • Fantini A, Demurtas A, Nicoli S, et al. In vitro skin retention of crisaborole after topical application. Pharmaceutics. 2020;12(6):491. doi: 10.3390/pharmaceutics12060491.
  • Shao M, Hussain Z, Thu HE, et al. Drug nanocarrier, the future of atopic diseases: advanced drug delivery systems and smart management of disease. Colloids Surf B Biointerfaces. 2016;147:475–491. doi: 10.1016/j.colsurfb.2016.08.027.
  • Choudhury H, Gorain B, Pandey M, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736–1751. doi: 10.1016/j.xphs.2017.03.042.
  • Lalan M, Baweja J, Misra A. Atopic dermatitis: drug delivery approaches in disease management. Crit Rev Ther Drug Carrier Syst. 2015;32(4):323–361.
  • Peltola S, Saarinen-Savolainen P, Kiesvaara J, et al. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254(2):99–107. doi: 10.1016/s0378-5173(02)00632-4.
  • Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des Devel Ther. 2020;14:3271–3289. doi: 10.2147/DDDT.S264648.
  • Shafiq S, Shakeel F, Talegaonkar S, et al. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227–243. doi: 10.1016/j.ejpb.2006.10.014.
  • Yu M, Ma H, Lei M, et al. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur J Pharm Biopharm. 2014;88(1):92–103. doi: 10.1016/j.ejpb.2014.03.019.
  • Espinoza LC, Silva-Abreu M, Calpena AC, et al. Nanoemulsion strategy of pioglitazone for the treatment of skin inflammatory diseases. Nanomedicine. 2019;19:115–125. doi: 10.1016/j.nano.2019.03.017.
  • Che Marzuki NH, Wahab RA, Abdul Hamid M. An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip. 2019;33(1):779–797. doi: 10.1080/13102818.2019.1620124.
  • Shinde UA, Modani SH, Singh KH. Design and development of repaglinide microemulsion gel for transdermal delivery. AAPS PharmSciTech. 2018;19(1):315–325. doi: 10.1208/s12249-017-0811-4.
  • Sharma S, Sarangdevot K. Nanoemulsions for cosmetics. Int J Adv Res Pharm Biosci. 2012;1(4):408–416.
  • Singh RD, Kapila S, Ganesan NG, et al. A review on green nanoemulsions for cosmetic applications with special emphasis on microbial surfactants as impending emulsifying agents. J Surfact Detergents. 2022;25(3):303–319. doi: 10.1002/jsde.12571.
  • Malavi S, Kumbhar P, Manjappa A, et al. Topical emulgel: basic considerations in development and advanced research. IJPS. 2022;84(5):1105–1115. doi: 10.36468/pharmaceutical-sciences.1005.
  • Yeo E, Chieng CJY, Choudhury H, et al. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: fabrication, characterization and comparative in vitro evaluations. Curr Res Pharmacol Drug Discov. 2021;2:100019. doi: 10.1016/j.crphar.2021.100019.
  • Sultana N, Akhtar J, Khan MI, et al. Nanoemulgel: for promising topical and systemic delivery. In: Akhtar J, Badruddeen, Ahmad M, et al., editors. Drug development life cycle. London: IntechOpen; 2022.
  • Azeem A, Rizwan M, Ahmad FJ, et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10(1):69–76. doi: 10.1208/s12249-008-9178-x.
  • Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121. doi: 10.1016/s0169-409x(00)00103-4.
  • Pathan I, Mangle M, Bairagi S. Design and characterization of nanoemulsion for transdermal delivery of meloxicam. Anal Chem Lett. 2016;6(3):286–295. doi: 10.1080/22297928.2016.1209126.
  • Md S, Alhakamy NA, Aldawsari HM, et al. Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells. Pharmaceuticals. 2020;13(7):152. doi: 10.3390/ph13070152.
  • Ahmad U, Akhtar J, Singh SP, et al. Silymarin nanoemulsion against human hepatocellular carcinoma: development and optimization. Artif Cells Nanomed Biotechnol. 2018;46(2):231–241. doi: 10.1080/21691401.2017.1324465.
  • Akrawi SH, Gorain B, Nair AB, et al. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics. 2020;12(9):893. doi: 10.3390/pharmaceutics12090893.
  • Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Delivery Sci Technol. 2020;59:101847. doi: 10.1016/j.jddst.2020.101847.
  • Chime S, Kenechukwu F, Attama A. Nanoemulsions—advances in formulation, characterization and applications in drug delivery. Appl Nanotechnol Drug Deliv. 2014;3:77–126.
  • Mahtab A, Anwar M, Mallick N, et al. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech. 2016;17(6):1477–1490. doi: 10.1208/s12249-016-0488-0.
  • Ansari MN, Soliman GA, Rehman NU, et al. Crisaborole loaded nanoemulsion based chitosan gel: formulation, physicochemical characterization and wound healing studies. Gels. 2022;8(5):318. doi: 10.3390/gels8050318.
  • Chauhan S, Gulati N, Nagaich U. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery. Int J Polymer Mater Polymer Biomater. 2019;68(5):266–277. doi: 10.1080/00914037.2018.1443932.
  • Wang Y, Cao S, Yu K, et al. Integrating tacrolimus into eutectic oil-based microemulsion for atopic dermatitis: simultaneously enhancing percutaneous delivery and treatment efficacy with relieving side effects. Int J Nanomedicine. 2019;14:5849–5863. doi: 10.2147/IJN.S212260.
  • Yu K, Wang Y, Wan T, et al. Tacrolimus nanoparticles based on chitosan combined with nicotinamide: enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int J Nanomedicine. 2018;13:129–142. doi: 10.2147/IJN.S150319.
  • Han EJ, Fernando IPS, Kim H-S, et al. Oral administration of Sargassum horneri improves the HDM/DNCB-induced atopic dermatitis in NC/nga mice. Nutrients. 2020;12(8):2482. doi: 10.3390/nu12082482.
  • Khan RU, Shah SU, Rashid SA, et al. Lornoxicam-loaded chitosan-decorated nanoemulsion: preparation and in vitro evaluation for enhanced transdermal delivery. Polymers. 2022;14(9):1922. doi: 10.3390/polym14091922.
  • Zhang EY, Chen AY, Zhu BT. Mechanism of dinitrochlorobenzene-induced dermatitis in mice: role of specific antibodies in pathogenesis. PLoS One. 2009;4(11):e7703. doi: 10.1371/journal.pone.0007703.
  • Azeem A, Rizwan M, Ahmad FJ, et al. Components screening and influence of surfactant and cosurfactant on nanoemulsion formation. CNANO. 2009;5(2):220–226. doi: 10.2174/157341309788185505.
  • Amra K, Momin M. Formulation evaluation of ketoconazole microemulsion‐loaded hydrogel with nigella oil as a penetration enhancer. J Cosmet Dermatol. 2019;18(6):1742–1750. doi: 10.1111/jocd.12945.
  • Tiwari N, Sivakumar A, Mukherjee A, et al. Enhanced antifungal activity of ketoconazole using rose oil based novel microemulsion formulation. J Drug Delivery Sci Technol. 2018;47:434–444. doi: 10.1016/j.jddst.2018.07.007.
  • Kotta S, Khan AW, Ansari S, et al. Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv. 2015;22(4):455–466. doi: 10.3109/10717544.2013.866992.
  • Kumar, N, Shishu. D-optimal experimental approach for designing topical microemulsion of itraconazole: characterization and evaluation of antifungal efficacy against a standardized tinea pedis infection model in Wistar rats.Eur J Pharm Sci. 2015;67:97–112. doi: 10.1016/j.ejps.2014.10.014.
  • Elmataeeshy ME, Sokar MS, Bahey-El-Din M, et al. Enhanced transdermal permeability of terbinafine through novel nanoemulgel formulation; development, in vitro and in vivo characterization. Future J Pharm Sci. 2018;4(1):18–28. doi: 10.1016/j.fjps.2017.07.003.
  • Patil P, Joshi P, Paradkar A. Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen. AAPS PharmSciTech. 2004;5(3):e42. doi: 10.1208/pt050342.
  • Ali HH, Hussein AA. Oral nanoemulsions of candesartan cilexetil: formulation, characterization and in vitro drug release studies. Aaps Open. 2017;3(1):1–16.
  • Mehrandish S, Mirzaeei S. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: development, characterization and in vitro bioassay. Adv Pharm Bull. 2022;12(1):93.
  • Laxmi M, Bhardwaj A, Mehta S, et al. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015;43(5):334–344. doi: 10.3109/21691401.2014.887018.
  • Soriano-Ruiz JL, Calpena-Capmany AC, Cañadas-Enrich C, et al. Biopharmaceutical profile of a clotrimazole nanoemulsion: evaluation on skin and mucosae as anticandidal agent. Int J Pharm. 2019;554:105–115. doi: 10.1016/j.ijpharm.2018.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.