116
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Breaking barriers: bilosomes gel potentials to pave the way for transdermal breast cancer treatment with Tamoxifen

, , , , &
Received 07 Mar 2023, Accepted 31 Aug 2023, Published online: 20 Sep 2023

References

  • World Health Organization. Breast cancer 2020. [cited 2021 May 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.
  • Abdel-Razeq H, Abu Rous F, Abuhijla F, et al. Breast cancer in geriatric patients: current landscape and future prospects. Clin Interv Aging. 2022;17:1445–1460. doi: 10.2147/CIA.S365497.
  • Mustafa SS, Naseer M, Mustafa SS, et al. A comparison of mammography and ultrasonography in the evaluation of breast masses in early stage. Al-Kitab J Pure Sci. 2022;2(2):209–220. doi: 10.32441/kjps.02.02.p14.
  • Jameel KW. Study of the possible risk factors attributed to breast cancer in Alwasity Secondary School Kirkuk/Iraq. Al-Kitab J Pure Sci. 2019;3(2):171–179.
  • Woodruff A, Downey L. Challenges in the diagnosis and treatment of breast cancer in the elderly. Consultant360. 2009;17(11):30–35.
  • Shin S-C, Choi J-S, Li X. Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int J Pharm. 2006;313(1–2):144–149. doi: 10.1016/j.ijpharm.2006.01.028.
  • Yoo JJ, Lim YS, Kim MS, et al. Risk of fatty liver after long-term use of tamoxifen in patients with breast cancer. PLoS One. 2020;15(7):e0236506. doi: 10.1371/journal.pone.0236506.
  • Lorizio W, Wu AH, Beattie MS, et al. Clinical and biomarker predictors of side effects from tamoxifen. Breast Cancer Res Treat. 2012;132(3):1107–1118. doi: 10.1007/s10549-011-1893-4.
  • Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for the prevention of breast cancer: current status of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst. 2005;97(22):1652–1662. doi: 10.1093/jnci/dji372.
  • Kaestli LZ, Wasilewski-Rasca AF, Bonnabry P, et al. Use of transdermal drug formulations in the elderly. Drugs Aging. 2008;25(4):269–280. doi: 10.2165/00002512-200825040-00001.
  • Priano L, Gasco MR, Mauro A. Transdermal treatment options for neurological disorders: impact on the elderly. Drugs Aging. 2006;23(5):357–375. doi: 10.2165/00002512-200623050-00001.
  • Ichikawa A, Sumino H, Ogawa T, et al. Effects of long-term transdermal hormone replacement therapy on the renin–angiotensin–aldosterone system, plasma bradykinin levels and blood pressure in normotensive postmenopausal women. Geriatr Gerontol Int. 2008;8(4):259–264. doi: 10.1111/j.1447-0594.2008.00474.x.
  • Abdulbaqi IM, Darwis Y, Khan NA, et al. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279–2304. doi: 10.2147/IJN.S105016.
  • Transdermal and topical delivery systems - product development and quality considerations guidance for industry [Internet]. 2019. Available from: https://www.fda.gov/media/132674/download.
  • Laghari M, Darwis Y, Memon AH, et al. Nanoformulations and clinical trial candidates as probably effective and safe therapy for tuberculosis. Trop J Pharm Res. 2016;15(1):201–211. doi: 10.4314/tjpr.v15i1.28.
  • Abou Assi R, Abdulbaqi IM, Siok Yee C. The evaluation of drug delivery nanocarrier development and pharmacological briefing for metabolic-associated fatty liver disease (MAFLD): an update. Pharmaceuticals. 2021;14(3):215. doi: 10.3390/ph14030215.
  • Conacher M, Alexander J, Brewer JM. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine. 2001;19(20–22):2965–2974. doi: 10.1016/s0264-410x(00)00537-5.
  • Abdulbaqi IM, Darwis Y, Assi RA, et al. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des Devel Ther. 2018;12:795–813. doi: 10.2147/DDDT.S158018.
  • Albash R, El-Nabarawi MA, Refai H, et al. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine. 2019;14:6555–6574. doi: 10.2147/IJN.S213613.
  • Abdelalim LR, Abdallah OY, Elnaggar YSR. High efficacy, rapid onset nanobiolosomes of sildenafil as a topical therapy for erectile dysfunction in aged rats. Int J Pharm. 2020;591:119978. doi: 10.1016/j.ijpharm.2020.119978.
  • Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015;485(1–2):329–340. doi: 10.1016/j.ijpharm.2015.03.033.
  • Salem HF, Nafady MM, Ali AA, et al. Evaluation of metformin hydrochloride tailoring bilosomes as an effective transdermal nanocarrier. Int J Nanomedicine. 2022;17:1185–1201. doi: 10.2147/IJN.S345505.
  • Ahmed S, Kassem MA, Sayed S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomedicine. 2020;15:9783–9798. doi: 10.2147/IJN.S278688.
  • Aziz DE, Abdelbary AA, Elassasy AI. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: in vitro characterization, ex vivo permeation and in vivo skin deposition study. J Liposome Res. 2019;29(1):73–85. 2doi: 10.1080/08982104.2018.1430831.
  • Ammar HO, Mohamed MI, Tadros MI, et al. Transdermal delivery of ondansetron hydrochloride via bilosomal systems: in vitro, ex vivo, and in vivo characterization studies. AAPS PharmSciTech. 2018;19(5):2276–2287. doi: 10.1208/s12249-018-1019-y.
  • Khalil RM, Abdelbary A, Kocova El-Arini S, et al. Evaluation of bilosomes as nanocarriers for transdermal delivery of tizanidine hydrochloride: in vitro and ex vivo optimization. J Liposome Res. 2019;29(2):171–182. doi: 10.1080/08982104.2018.1524482.
  • Ma L, Wang X, Wu J, et al. Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for the treatment of melanoma through transdermal delivery. Nanomedicine. 2019;14(18):2395–2408. doi: 10.2217/nnm-2018-0398.
  • Sugumar V, Hayyan M, Madhavan P, et al. Current development of chemical penetration enhancers for transdermal insulin delivery. Biomedicines. 2023;11(3):664. doi: 10.3390/biomedicines11030664.
  • Pavlović N, Goločorbin-Kon S, Ðanić M, et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles [review]. Front Pharmacol. 2018;9:1283. doi: 10.3389/fphar.2018.01283.
  • Lin Y-L, Chen C-H, Wu H-Y, et al. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J Nanobiotechnology. 2016;14(1):11. doi: 10.1186/s12951-016-0163-3.
  • Kumar Sarwa K, K Suresh P, Debnath M, et al. Tamoxifen citrate loaded ethosomes for transdermal drug delivery system: preparation and characterization. Curr Drug Deliv. 2013;//10(4):466–476. doi: 10.2174/1567201811310040011.
  • Pathan IB, Setty CM. Enhancement of transdermal delivery of tamoxifen citrate using nanoemulsion vehicle. Int J Pharm Tech Res. 2011;3(1):287–297.
  • Sundralingam U, Chakravarthi S, Radhakrishnan AK, et al. Efficacy of emu oil transfersomes for local transdermal delivery of 4-OH tamoxifen in the treatment of breast cancer. Pharmaceutics. 2020;12(9):807. doi: 10.3390/pharmaceutics12090807.
  • Adhyapak AA, Desai BG. Formulation and evaluation of liposomal transdermal patch for targeted drug delivery of tamoxifen citrate for breast cancer. Indian J Health Sci Biomed Res. 2016;9(1):40. doi: 10.4103/2349-5006.183677.
  • Dave V, Bhardwaj N, Gupta N, et al. Herbal ethosomal gel containing luliconazole for productive relevance in the field of biomedicine. 3 Biotech. 2020;10(3):97. doi: 10.1007/s13205-020-2083-z.
  • Saka R, Jain H, Kommineni N, et al. Enhanced penetration and improved therapeutic efficacy of bexarotene via topical liposomal gel in imiquimod induced psoriatic plaque model in BALB/c mice. J Drug Delivery Sci Technol. 2020;58:101691. doi: 10.1016/j.jddst.2020.101691.
  • El-Hashemy HA. Design, formulation and optimization of topical ethosomes using full factorial design: in-vitro and ex-vivo characterization. J Liposome Res. 2022;32(1):74–82. doi: 10.1080/08982104.2021.1955925.
  • Shen L-N, Zhang Y-T, Wang Q, et al. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm. 2014;460(1–2):280–288. doi: 10.1016/j.ijpharm.2013.11.017.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: 10.3390/pharmaceutics10020057.
  • Wilson V, Siram K, Rajendran S, et al. Development and evaluation of finasteride loaded ethosomes for targeting to the pilosebaceous unit. Artif Cells Nanomed Biotechnol. 2018;46(8):1892–1901.
  • Danielsen EM, Hansen G. Probing the action of permeation enhancers sodium cholate and N-dodecyl-β-D-maltoside in a porcine jejunal mucosal explant system. Pharmaceutics. 2018;10(4):172. doi: 10.3390/pharmaceutics10040172.
  • Bellefroid C, Lechanteur A, Evrard B, et al. In vitro skin penetration enhancement techniques: a combined approach of ethosomes and microneedles. Int J Pharm. 2019;572:118793. doi: 10.1016/j.ijpharm.2019.118793.
  • Franz-Montan M, de Araújo DR, de Morais Ribeiro LN, et al. Nanostructured systems for transbuccal drug delivery. In: Andronescu E, Grumezescu AM, editors. Nanostructures for oral medicine. Amsterdam: Elsevier; 2017. p. 87–121.
  • Moiseev RV, Morrison PWJ, Steele F, et al. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11(7):321. doi: 10.3390/pharmaceutics11070321.
  • Borg TM. Bile salts as skin permeation enhancers. Pharmazeutische Industrie. 2000;62:157–160. 02/01
  • Mahaling B, Katti DS. Understanding the influence of surface properties of nanoparticles and penetration enhancers for improving bioavailability in eye tissues in vivo. Int J Pharm. 2016;501(1–2):1–9. doi: 10.1016/j.ijpharm.2016.01.053.
  • Khattab A, Nattouf A. Optimization of entrapment efficiency and release of clindamycin in microsponge based gel. Sci Rep. 2021;11(1):23345. 2021/12/02doi: 10.1038/s41598-021-02826-7.
  • Lambers H, Piessens S, Bloem A, et al. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–370. [ doi: 10.1111/j.1467-2494.2006.00344.x.
  • Liposome drug products: chemistry, manufacturing, and controls; Human pharmacokinetics and bioavailability; Labeling documentation. Guidance for industry [Internet]. Silver Spring (MD): Food and Drug Administration; 2018.
  • Paliwal S, Tilak A, Sharma J, et al. Flurbiprofen loaded ethosomes - transdermal delivery of anti-inflammatory effect in rat model. Lipids Health Dis. 2019;18(1):133. doi: 10.1186/s12944-019-1064-x.
  • Zaki RM, Seshadri VD, Mutayran AS, et al. Wound healing efficacy of rosuvastatin transethosomal gel, I optimal optimization, histological and in vivo evaluation. Pharmaceutics. 2022;14(11):2521. doi: 10.3390/pharmaceutics14112521.
  • Pilch E, Musiał W. Liposomes with an ethanol fraction as an application for drug delivery. Int J Mol Sci. 2018;19(12):3806. doi: 10.3390/ijms19123806.
  • Amr Gamal F, Kharshoum RM, Sayed OM, et al. Control of basal cell carcinoma via positively charged ethosomes of vismodegib: in vitro and in vivo studies. J Drug Delivery Sci Technol. 2020;56:101556. doi: 10.1016/j.jddst.2020.101556.
  • Khafagy E-S, Almutairy BK, Abu Lila AS. Tailoring of novel bile salt stabilized vesicles for enhanced transdermal delivery of simvastatin: a new therapeutic approach against inflammation. Polymers. 2023;15(3):677. doi: 10.3390/polym15030677.
  • Mahmoud TM, Nafady MM, Farouk HO, et al. Novel bile salt stabilized Vesicles-Mediated effective topical delivery of diclofenac sodium: a new therapeutic approach for pain and inflammation. Pharmaceuticals. 2022;15(9):1106. doi: 10.3390/ph15091106.
  • Nasri S, Ebrahimi-Hosseinzadeh B, Rahaie M, et al. Thymoquinone-loaded ethosome with breast cancer potential: optimization, in vitro and biological assessment. J Nanostruct Chem. 2020;10(1):19–31. doi: 10.1007/s40097-019-00325-w.
  • Das SK, Chakraborty S, Roy C, et al. Ethosomes as novel vesicular carrier: an overview of the principle, preparation and its applications. Curr Drug Deliv. 2018;15(6):795–817. doi: 10.2174/1567201815666180116091604.
  • Lupo N, Steinbring C, Friedl JD, et al. Impact of bile salts and a medium chain fatty acid on the physical properties of self-emulsifying drug delivery systems. Drug Dev Ind Pharm. 2021;47(1):22–35. doi: 10.1080/03639045.2020.1851241.
  • Yang G, Wu F, Chen M, et al. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides. Int J Nanomedicine. 2019;14:2267–2280. doi: 10.2147/IJN.S194934.
  • Francke NM, Bunjes H. Influence of drug loading on the physical stability of phospholipid-stabilised colloidal lipid emulsions. Int J Pharm X. 2020;2:100060. doi: 10.1016/j.ijpx.2020.100060.
  • Alam P, Shakeel F, Foudah AI, et al. Central composite design (CCD) for the optimisation of ethosomal gel formulation of Punica granatum extract: in vitro and in vivo evaluations. Gels. 2022;8(8):511. doi: 10.3390/gels8080511.
  • Sachan AK, Gupta A, Gupta P. Development and characterization of ethosomes based gel formulation for enhanced topical delivery. MIT Int J Pharm Sci. 2017;3(2):64–70.
  • Shukla R, Tiwari G, Tiwari R, et al. Formulation and evaluation of the topical ethosomal gel of melatonin to prevent UV radiation. J Cosmet Dermatol. 2020;19(8):2093–2104. doi: 10.1111/jocd.13251.
  • Shigefuji M, Tokudome Y. Nanoparticulation of hyaluronic acid: a new skin penetration enhancing polyion complex formulation: mechanism and future potential. Materialia. 2020;14:100879. doi: 10.1016/j.mtla.2020.100879.
  • Tan SM, Teoh XY, Le Hwang J, et al. Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Delivery Sci Technol. 2022;76:103761. 2022/10/01/doi: 10.1016/j.jddst.2022.103761.
  • Alasvand N, Urbanska AM, Rahmati M, et al. Therapeutic nanoparticles for targeted delivery of anticancer drugs. In: Grumezescu AM, editor. Multifunctional systems for combined delivery, biosensing and diagnostics. Amsterdam: Elsevier; 2017. p. 245–259.
  • Gao J, Karp JM, Langer R, et al. The future of drug delivery. Chem Mater. 2023;35(2):359–363. doi: 10.1021/acs.chemmater.2c03003.
  • Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–14473. doi: 10.3390/molecules200814451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.