118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative analysis of cephalexin in solid dosage form by Raman spectroscopy and chemometric tools

, , , , , , , , , , , & show all
Pages 1-10 | Received 07 Sep 2023, Accepted 27 Nov 2023, Published online: 25 Dec 2023

References

  • West MJ, Went MJ. Detection of drugs of abuse by Raman spectroscopy. Drug Test Anal. 2011;3(9):532–538. doi:10.1002/dta.217.
  • Speight T, Brogden R, Avery G. Cephalexin: a review of its antibacterial, pharmacological and therapeutic properties. Drugs. 1972;3(1):9–78. doi:10.2165/00003495-197203010-00002.
  • Noman EA, et al. Sustainable approaches for removal of cephalexin antibiotic from non-clinical environments: a critical review. J Hazard Mater. 2021;417:126040. doi:10.1016/j.jhazmat.2021.126040.
  • Chaudhary T, Chaudhary MK, Joshi BD, et al. Spectroscopic (FT-IR, Raman) analysis and computational study on conformational geometry, AIM and biological activity of cephalexin from DFT and molecular docking approach. J Mol Struct. 2021;1240:130594. doi:10.1016/j.molstruc.2021.130594.
  • Wang B, Li H, Liu T, et al. Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. Chemosphere. 2021;263:128224. doi:10.1016/j.chemosphere.2020.128224.
  • Frère J-M, et al. Mode of action of B-lactam antibiotics at the molecular level. 1980.
  • Taylor LS, Langkilde FW. Evaluation of solid‐state forms present in tablets by Raman spectroscopy. J Pharm Sci. 2000;89(10):1342–1353. doi:10.1002/1520-6017(200010)89.
  • Wang X, Mao D-Z, Yang Y-J. Calibration transfer between modelled and commercial pharmaceutical tablet for API quantification using backscattering NIR, Raman and transmission Raman spectroscopy (TRS). J Pharm Biomed Anal. 2021;194:113766. doi:10.1016/j.jpba.2020.113766.
  • Alula MT, Mengesha ZT, Mwenesongole E. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: a review. Vib Spectrosc. 2018;98:50–63. doi:10.1016/j.vibspec.2018.06.013.
  • Andrasi M, Buglyo P, Zekany L, et al. A comparative study of capillary zone electrophoresis and pH-potentiometry for determination of dissociation constants. J Pharm Biomed Anal. 2007;44(5):1040–1047. doi:10.1016/j.jpba.2007.04.024.
  • Tyczkowska K, Aronson AL. Analysis of cephalexin from canine skin biopsy by liquid chromatography with ultraviolet-visible photodiode-array detection. J Chromatogr. 1988;427(1):103–112. doi:10.1016/0378-4347(88)80108-7.
  • Campíns-Falcó P, et al. Comparative study on the determination of cephalexin in its dosage forms by spectrophotometry and HPLC with UV-vis detection. Microchim Acta. 1997;126(3):207–215. doi:10.1007/BF01242322.
  • Basavaraj H, Mruthyunjayaswamy B. An experimental design approach for validation and optimisation of spectrophotometric determination of cefixime in pharmaceutical dosage form. IJPS. 2022;84(1):115–120. doi:10.36468/pharmaceutical-sciences.902.
  • Ji W, Wang L, Qian H, et al. Quantitative analysis of amoxicillin residues in foods by surface-enhanced Raman spectroscopy. Spectrosc Lett. 2014;47(6):451–457. doi:10.1080/00387010.2013.807843.
  • Izake EL. Forensic and homeland security applications of modern portable Raman spectroscopy. Forensic Sci Int. 2010;202(1–3):1–8. doi:10.1016/j.forsciint.2010.03.020.
  • Glover WB. N-beta-methylamino-L-alanine: a non-protein amino acid incorporated into protein [Doctoral dissertation]. Vancouver: University of British Columbia, 2014.
  • Strachan CJ, Rades T, Gordon KC, et al. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J Pharm Pharmacol. 2007;59(2):179–192. doi:10.1211/jpp.59.2.0005.
  • Cailletaud J, De Bleye C, Dumont E, et al. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field. J Pharm Biomed Anal. 2018;147:458–472. doi:10.1016/j.jpba.2017.06.056.
  • Hédoux A, Guinet Y, Descamps M. The contribution of Raman spectroscopy to the analysis of phase transformations in pharmaceutical compounds. Int J Pharm. 2011;417(1-2):17–31. doi:10.1016/j.ijpharm.2011.01.031.
  • Vankeirsbilck T, Vercauteren A, Baeyens W, et al. Applications of Raman spectroscopy in pharmaceutical analysis. Trends Anal Chem. 2002;21(12):869–877. doi:10.1016/S0165-9936(02)01208-6.
  • Ayala AP. Polymorphism in drugs investigated by low wavenumber Raman scattering. Vib Spectrosc. 2007;45(2):112–116. doi:10.1016/j.vibspec.2007.06.004.
  • Bajwa J, Nawaz H, Majeed MI, et al. Quantitative analysis of solid dosage forms of cefixime using Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2020;238:118446. doi:10.1016/j.saa.2020.118446.
  • Bakkar MA, Nawaz H, Majeed MI, et al. Raman spectroscopy for the qualitative and quantitative analysis of solid dosage forms of sitagliptin. Spectrochim Acta A Mol Biomol Spectrosc. 2021;245:118900. doi:10.1016/j.saa.2020.118900.
  • D Patel B, Mehta PJ. An overview: application of Raman spectroscopy in pharmaceutical field. Current Pharm Anal. 2010;6(2):131–141. doi:10.2174/157341210791202654.
  • Lipiäinen T, Fraser-Miller SJ, Gordon KC, et al. Direct comparison of low-and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis. J Pharm Biomed Anal. 2018;149:343–350. doi:10.1016/j.jpba.2017.11.013.
  • Shafaq S, Irfan Majeed M, Nawaz H, et al. Quantitative analysis of solid dosage forms of losartan potassium by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2022;272:120996. doi:10.1016/j.saa.2022.120996.
  • Tahir M, Majeed MI, Nawaz H, et al. Raman spectroscopy for the analysis of different exo-polysaccharides produced by bacteria. Spectrochim Acta A Mol Biomol Spectrosc. 2020;237:118408. doi:10.1016/j.saa.2020.118408.
  • Nawaz H, Rashid N, Saleem M, et al. Prediction of viral loads for diagnosis of hepatitis C infection in human plasma samples using Raman spectroscopy coupled with partial least squares regression analysis. J Raman Spectroscopy. 2017;48(5):697–704. doi:10.1002/jrs.5108.
  • Iliescu T, Baia M, Pavel I. Raman and SERS investigations of potassium benzylpenicillin. J Raman Spectroscopy. 2006;37(1-3):318–325. doi:10.1002/jrs.1464.
  • Jin M, Shan J, Wang X, et al. Determination of florfenicol in antibiotic mixtures by solid-Phase extraction (SPE) and Surface-Enhanced Raman scattering (SERS). Anal Lett. 2022;55(4):517–528. doi:10.1080/00032719.2021.1946075.
  • de Veij M, Vandenabeele P, De Beer T, et al. Reference database of Raman spectra of pharmaceutical excipients. J Raman Spectroscopy. 2009;40(3):297–307. doi:10.1002/jrs.2125.
  • Chen X, Hu Y, Gao J. Tautomers of 2-aminothiazole molecules in aqueous solutions explored by Raman, SERS and DFT methods. J Mol Struct. 2013;1049:362–367. doi:10.1016/j.molstruc.2013.06.041.
  • Youssef F, Mohamed G, Ismail S, et al. Synthesis, characterization and in vitro antimicrobial activity of Florfenicol-Chitosan nanocomposite. Egypt J Chem. 2021;0(0):0–0. doi:10.21608/ejchem.2020.43238.2883.
  • Edwards HG, Farwell DW, Newton EM, et al. Application of FT-Raman spectroscopy to the characterisation of parchment and vellum, I; novel information for paleographic and historiated manuscript studies. Spectrochim Acta A Mol Biomol Spectrosc. 2001;57(6):1223–1234. doi:10.1016/S1386-1425(00)00467-4.
  • Mendham AP, Dines TJ, Withnall R, et al. Vibrational spectroscopic studies of the structure of di‐amino acid peptides. Part II: cyclo (L‐asp‐L‐asp) in the solid state and in aqueous solution. J Raman Spectroscopy. 2009;40(11):1498–1507. doi:10.1002/jrs.2307.
  • Haris M, Kathiresan S, Mohan S. FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chem. 2010;2(4):316–323.
  • Adar F. Characterizing modified celluloses using Raman spectroscopy. Spectroscopy. 2016;31(11):22–27.
  • McDonald MA, Marshall GD, Bommarius AS, et al. Crystallization kinetics of cephalexin monohydrate in the presence of cephalexin precursors. Crystal Growth Des. 2019;19(9):5065–5074. doi:10.1021/acs.cgd.9b00429.
  • Liu C, Ma W, Gao Z, et al. Upconversion luminescence nanoparticles-based lateral flow immunochromatographic assay for cephalexin detection. J Mater Chem C. 2014;2(45):9637–9642. doi:10.1039/C4TC02034K.
  • Roy TA, Szinal SS. Pyrolysis GLC identification of food and drug ingredients. II. Qualitative and quantitative analysis of penicillins and cephalosporins. J Chromatogr Sci. 1976;14(12):580–584. doi:10.1093/chromsci/14.12.580.
  • Kotte SCB. Qualitative analysis of amoxicillin, ampicillin, cephalexin by quadrupole–time of flight (LCMS) using electrospray ionization. Int J ChemTech Res. 2012;4:855–861.
  • Xuân T, et al. FTIR combined with chemometrics for fast simultaneous determination of penicillin and cephalexin in pharmaceutical tablets. Int J Sci: Basic Appl Res. 2017;36(6):87–94. doi:10.5530/jyp.2020.12s.46.
  • Zhao F, Wang W, Zhong H, et al. Robust quantitative SERS analysis with relative Raman scattering intensities. Talanta. 2021;221:121465. doi:10.1016/j.talanta.2020.121465.
  • Sadergaski LR, Hager TJ, Andrews HB. Design of experiments, chemometrics, and Raman spectroscopy for the quantification of hydroxylammonium, nitrate, and nitric acid. ACS Omega. 2022;7(8):7287–7296. doi:10.1021/acsomega.1c07111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.