239
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Formulation development and evaluation of nasal in situ gel of promethazine hydrochloride

&
Pages 11-22 | Received 19 Jun 2023, Accepted 30 Nov 2023, Published online: 14 Dec 2023

References

  • Hussain AA. Intranasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):39–49. doi: 10.1016/s0169-409x(97)00060-4.
  • Grassin-Delyle S, Buenestado A, Naline E, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–379. doi: 10.1016/j.pharmthera.2012.03.003.
  • Schmidt MC, Rothen-Rutishauser B, Rist B, et al. Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane. Biochemistry. 1998;37(47):16582–16590. doi: 10.1021/bi981219h.
  • Sayani AP, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae. Crit Rev Ther Drug Carrier Syst. 1996;13(1–2):85–184.
  • Lopes T, Dias JS, Marcelino J, et al. An assessment of the clinical efficacy of intranasal desmopressin spray in the treatment of renal colic. BJU Int. 2001;87(4):322–325. doi: 10.1046/j.1464-410x.2001.00068.x.
  • Hinchcliffe M, Illum L. Intranasal insulin delivery and therapy. Adv Drug Deliv Rev. 1999;35(2–3):199–234. doi: 10.1016/s0169-409x(98)00073-8.
  • CAIV-T. Influenza vaccine live intranasal. Influenza virus vaccine live intranasal -MedImmune vaccines. Drugs R&D. 2013;4(5):312–319.
  • Khan AR, Liu M, Khan W, et al. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364–389. doi: 10.1016/j.jconrel.2017.09.001.
  • Costantino HR, Illum L, Brandt G, et al. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24. doi: 10.1016/j.ijpharm.2007.03.025.
  • Rojanasakul Y, Wang LY, Bhat M, et al. The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res. 1992;9(8):1029–1034. doi: 10.1023/a:1015802427428.
  • Bitter C, Suter- Zimmermann K, Surber C. Nasal drug delivery in humans. In: Surber C, Elsner P, Farage MA, editors. Topical applications and the mucosa; Current problems in dermatology. Basel: Karger; 2011. p. 20–35.
  • Wermeling DP, Miller J. Intranasal drug delivery. In: Rathbone MJ, editor. Modified-release drug delivery system. New York: Marcel Dekker; 2002. p. 731–732.
  • Yurtdaş-Kırımlıoğlu G. A promising approach to design thermosensitive in situ gel based on solid dispersions of desloratadine with kolliphor® 188 and pluronic® F127. J Therm Anal Calorim. 2022;147(2):1307–1327. doi: 10.1007/s10973-020-10460-0.
  • Kaur P, Garg T, Rath G, et al. In situ nasal gel drug delivery: a novel approach for brain targeting. Artif Cells Nanomed Biotechnol. 2015;44(4):1167–1176. doi: 10.3109/21691401.2015.1012260.
  • Wang Q, Zuo Z, Cheung CKC, et al. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm. 2019;559:86–101. doi: 10.1016/j.ijpharm.2019.01.030.
  • Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm. 2008;355(1–2):1–18. doi: 10.1016/j.ijpharm.2008.01.057.
  • Khan S, Ullah A, Ullah K, et al. Insight into hydrogels. Des Monomers Polym. 2016;19(5):456–478. doi: 10.1080/15685551.2016.1169380.
  • Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2012;64:154–162. doi: 10.1016/j.addr.2012.09.012.
  • Singh RMP, Kumar A, Pathak K. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery. Expert Opin Drug Deliv. 2012;10(1):115–130. doi: 10.1517/17425247.2013.746659.
  • Mortensen SK, Pedersen J. Structural study on the micelle formation of poly (ethy1ene oxide)-poly (propylene oxide)-poly (ethy1ene oxide) triblock copolymer in aqueous solution. Macromolecules. 1993;26(4):805–812. doi: 10.1021/ma00056a035.
  • Cabana A, Kadi AA, Juhasz J. Study of the gelation process of polyethylene oxide a – polypropylene oxide b – polyethylene oxide a copolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci. 1997;190(2):307–312. doi: 10.1006/jcis.1997.4880.
  • Qui Y, Hamilton SK, Temenoff J. Improving mechanical properties of injectable polymers and composites. Inject Biomater. 2011:61–91. doi:10.1533/9780857091376.1.61.
  • Sosnik A, Cohn D, Román J, et al. Crosslinkable PEO-PPO-PEO-based reverse thermo-responsive gels as potentially injectable materials. J Biomater Sci Polym Ed. 2003;14(3):227–239. doi: 10.1163/156856203763572680.
  • Ozsoy Y, Güngör S. Nasal route: an alternative approach for antiemetic drug delivery. Expert Opin Drug Deliv. 2011;8(11):1439–1453. doi: 10.1517/17425247.2011.607437.
  • Brayfield A, editor. Martindale the complete drug reference. 38th ed. London: Pharmaceutical Press; 2014. p. 638–625.
  • McDonough JA, Persyn JT, Nino JA, et al. Microcapsule-gel formulation of promethazine HCl for controlled nasal delivery: a motion sickness medication. J Microencapsul. 2007;24(2):109–116. doi: 10.1080/09687860600945628.
  • Hafner A, Filipović-Grcić J, Voinovich D, et al. Development and in vitro characterization of chitosan-based microspheres for nasal delivery of promethazine. Drug Dev Ind Pharm. 2007;33(4):427–436. doi: 10.1080/03639040600920309.
  • Iliger SR, Demappa T. Formulation and characterization of mucoadhesive microspheres of promethazine hydrochloride for nasal delivery. J Pharm Res. 2011;4(1):276–279.
  • Rowe RC, Sheskey PJ, Owen, SC, editors. Handbook of pharmaceutical excipients. 5th ed. London: Pharmaceutical Press; 2006. p. 506.
  • Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today. 2016;21(1):157–166. doi: 10.1016/j.drudis.2015.10.016.
  • Galgatte UC, Chaudhari PD. Preformulation study of poloxamer 407 gels: effect of additives. Int J Pharm Pharm Sci. 2013;6(1):130–133.
  • Chonkar A, Nayak U, Udupa N. Smart polymers in nasal drug delivery. Indian J Pharm Sci. 2015;77(4):367–375. doi: 10.4103/0250-474x.164770.
  • Behl CR, Pimplaskar HK, Sileno AP, et al. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):89–116. doi: 10.1016/s0169-409x(97)00063-x.
  • Steele G. Preformulation as an aid to product design in early drug development. In: Gibson M, editor. Pharmaceutical preformulation and formulation. A practical guide from candidate drug selection to commercial dosage form. New York: Informa Healthcare; 2009. p. 188–246.
  • International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. Q3B(R2) Impurities in new drug product. Amsterdam: The European Medicine Agency; 2006.
  • Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6(6):571–582. doi: 10.1002/JBM.820060609.
  • Bhandwalkar MJ, Avachat AM. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech. 2013;14(1):101–110. doi: 10.1208/s12249-012-9893-1.
  • Mali KK, Dhawale SC, Dias RJ, et al. Nasal mucoadhesive in-situ gel of granisetron hydrochloride using natural polymers. J App Pharm Sci. 2015;5(7):084–093. doi: 10.7324/JAPS.2015.50714.
  • Qian S, Cheong Wong Y, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm. 2014;468(1–2):272–282. doi: 10.1016/j.ijpharm.2014.04.015.
  • International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use Q8 (R2) pharmaceutical development. Amsterdam: European medicines agency; 2006.
  • Lawrence XY, Amidon G, Khan MA, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–783. doi: 10.1208/s12248-014-9598-3.
  • Mishra V, Thakur S, Patil A, et al. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv. 2018;15(8):737–758. doi: 10.1080/17425247.2018.1504768.
  • Zhang L, Mao S. Application of quality by design in the current drug development. Asian J Pharm Sci. 2016;12(1):1–8. doi: 10.1016/j.ajps.2016.07.006.
  • Beg S, Rehman Z. Central composite designs and their applications in pharmaceutical product development. In: Beg S, editor. Design of experiments for pharmaceutical product development. Singapore: Springer; 2021. p. 63–76.
  • Mura P, Mennini N, Nativi C, et al. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm. 2017;122:54–61. doi: 10.1016/j.ejpb.2017.10.008.
  • Dias R, Mali KK, Havaldar V. Formulation and evaluation of thermoreversible mucoadhesive nasal gels of metoclopramide hydrochloride. Lat Am J Pharm. 2010;29(3):354–361.
  • Galgatte UC, Kumbhar AB, Chaudhari PD. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Deliv. 2013;21(1):62–73. doi: 10.3109/10717544.2013.849778.
  • International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Q1 (R2). Amsterdam: The European Medicines Agency; 2003.
  • Shelke S, Shahi S, Jalalpure S, et al. Formulation and evaluation of thermoreversible mucoadhesive in situ gel for intranasal delivery of naratriptan hydrochloride. J Drug Deliv Sci Technol. 2015;29:1–32.
  • Altuntaş G, Yener E. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech. 2017;18(7):2673–2682. doi: 10.1208/s12249-017-0747-8.
  • Verekar RR, Gurav SS, Bolmal U. Thermosensitive mucoadhesive in situ gel for intranasal delivery of almotriptan malate: formulation, characterization and evaluation. J Drug Deliv Sci Technol. 2020;58:101778. doi: 10.1016/j.jddst.2020.101778.
  • Zahir-Jouzdani F, Wolf JD, Atyabi F, et al. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv. 2018;15(10):1007–1019. doi: 10.1080/17425247.2018.1517741.
  • Rehman S, Nabi B, Zafar A, et al. Intranasal delivery of mucoadhesive nanocarriers; a viable option for Parkinson’s disease treatment? Expert Opin Drug Deliv. 2019;16(12):1355–1366. doi: 10.1080/17425247.2019.1684895.
  • Abdeltawab H, Svirskis D, Sharma M. Formulation strategies to modulate drug release from poloxamer based in-situ gelling systems. Expert Opin Drug Deliv. 2020;17(4):495–509. doi: 10.1080/17425247.2020.1731469.
  • Sousa J, Alves G, Oliveira P, et al. Intranasal delivery of ciprofloxacin to rats: a topical approach using a thermoreversible in situ gel. Eur J Pharm Sci. 2017;97:30–37. doi: 10.1016/j.ejps.2016.10.033.
  • Rao M, Agrawal K, Shirsath G. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev Ind Pharm. 2016;43(1):142–150. doi: 10.1080/03639045.2016.1225754.
  • Khattab A, Marzok S, Ibrahim M. Development of optimized mucoadhesive thermosensitive pluronic based in situ gel for controlled delivery of latanoprost: antiglaucoma efficacy and stability approaches. J Drug Deliv Sci Techno. 2019;53:101134. doi: 10.1016/j.jddst.2019.101134.
  • Patel N, Thakkar V, Metalia V, et al. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept. Drug Dev Ind Pharm. 2016;42(9):1406–1423. doi: 10.3109/03639045.2015.1137306.
  • Merkus FW, Verhoef JC, Schipper NG, et al. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38. doi: 10.1016/s0169-409x(97)00059-8.
  • Corazza E, Pio di Cagno M, Bauer-Brandl A, et al. Drug delivery to the brain: in situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci. 2022;179:106294. doi: 10.1016/j.ejps.2022.106294.
  • Salatin S, Alami-Milani M, Daneshgar R, et al. The intranasal gels of Box-Behnken experimental design for preparation and optimization of selegiline hydrochloride. Drug Dev Ind Pharm. 44(10):1613–1621. doi: 10.1080/03639045.2018.1483387.
  • Zabirowicz ES, Gan T. Pharmacology of postoperative nausea and vomiting, pharmacology and physiology for anesthesia. Elsevier; 2019. p. 684.
  • Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994. doi: 10.1016/j.ijpharm.2021.120994.
  • Mohsen AM, Salama AAA, Asfou MH. Cubosome-based thermosensitive in situ gelling system for intranasal administration of lamotrigine with enhanced antiepileptic efficacy. Pharm Dev Technol. 2023;28(6):520–534. doi: 10.1080/10837450.2023.2216755.
  • Ghori MU, Mmh S. Nasal drug delivery systems: an overview. American J Pharmacol Sci. 2015;3(5):110–119.
  • Erlandsson B. Stability-indicating changes in poloxamers: the degradation of ethylene oxide-propylene oxide block copolymers at 25 and 40 C. Polym Degrad Stab. 2002;78(3):571–575. doi: 10.1016/S0141-3910(02)00233-1.
  • Akash MSH, Rehman K, Sun H, et al. Assessment of release kinetics, stability and polymer interaction of poloxamer 407-based thermosensitive gel of interleukin-1 receptor antagonist. Pharm Dev Technol. 2014;19(3):278–284. doi: 10.3109/10837450.2013.775158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.