128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement of dissolution rate and oral bioavailability of poorly soluble drug florfenicol by using solid dispersion and effervescent disintegration technology

, , , , , , , , , , , , , , , & show all
Pages 45-54 | Received 05 Oct 2023, Accepted 01 Dec 2023, Published online: 28 Dec 2023

References

  • Xu X, Liu Y, Guo M, et al. The “steric-like” inhibitory effect and mechanism of doxycycline on florfenicol metabolism: interaction risk. Food Chem Toxicol. 2022;169:113431. doi: 10.1016/j.fct.2022.113431.
  • Song C, Wei Y, Qiu Y, et al. Biodegradability and mechanism of florfenicol via chlorella sp. UTEX1602 and L38: experimental study. Bioresour Technol. 2019;272:529–534. doi: 10.1016/j.biortech.2018.10.080.
  • Leng N, Ju M, Jiang Y, et al. The therapeutic effect of florfenicol-loaded carboxymethyl chitosan-gelatin shell nanogels against Escherichia coli infection in mice. J Mol Struct. 2022;1269:133847. doi: 10.1016/j.molstruc.2022.133847.
  • Ma W, Wang L, Xu X, et al. Fate and exposure risk of florfenicol, thiamphenicol and antibiotic resistance genes during composting of swine manure. Sci Total Environ. 2022;839:156243. doi: 10.1016/j.scitotenv.2022.156243.
  • Song M, Li Y, Ning A, et al. Silica nanoparticles as a carrier in the controlled release of florfenicol. J Drug Deliv Sci Tec. 2010;20(5):349–352. doi: 10.1016/S1773-2247(10)50058-3.
  • Li B, Hu Y, Guo Y, et al. Coamorphous system of florfenicol-Oxymatrine for improving the solubility and dissolution rate of florfenicol: preparation, characterization and molecular dynamics simulation. J Pharm Sci. 2021;110(6):2544–2554. doi: 10.1016/j.xphs.2021.02.005.
  • Wang S, Chen N, Qu Y. Solubility of florfenicol in different solvents at temperatures from (278 to 318) K. J Chem Eng Data. 2011;56(3):638–641. doi: 10.1021/je1008284.
  • Zhang W, Liu C, Chen S, et al. Poloxamer modified florfenicol instant microparticles for improved oral bioavailability. Colloids Surf B Biointerfaces. 2020;193:111078. doi: 10.1016/j.colsurfb.2020.111078.
  • Liu Y, Zhao H, Zhu P, et al. Comprehending of florfenicol (form A) dissolution behavior in aqueous low alcohol blends: solubility, solvation thermodynamics as well as inter-molecular interactions. J Chem Thermodyn. 2023;176:106925. doi: 10.1016/j.jct.2022.106925.
  • Lou Y, Wang Y, Li Y, et al. Thermodynamic equilibrium and cosolvency of florfenicol in binary solvent system. J Mol Liq. 2018;251:83–91. doi: 10.1016/j.molliq.2017.12.046.
  • Fan G, Zhang L, Shen Y, et al. Comparative muscle irritation and pharmacokinetics of florfenicol-hydroxypropyl-β-cyclodextrin inclusion complex freeze-dried powder injection and florfenicol commercial injection in beagle dogs. Sci Rep. 2019;9(1):16739. doi: 10.1038/s41598-019-53304-0.
  • Sohn JS, Kim J, Choi J. Development of a naftopidil-chitosan-based fumaric acid solid dispersion to improve the dissolution rate and stability of naftopidil. Int J Biol Macromol. 2021;176:520–529. doi: 10.1016/j.ijbiomac.2021.02.096.
  • Dong W, Su X, Xu M, et al. Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique. Asian J Pharm Sci. 2018;13(6):546–554. doi: 10.1016/j.ajps.2018.08.010.
  • Choi J, Lee S, Jang WS, et al. Solid dispersion of dutasteride using the solvent evaporation method: approaches to improve dissolution rate and oral bioavailability in rats. Materials Science and Engineering: c. 2018;90:387–396. doi: 10.1016/j.msec.2018.04.074.
  • Zhang W, Sluga KK, Yost E, et al. Impact of drug loading on the compaction properties of itraconazole-PVPVA amorphous solid dispersions. Int J Pharm. 2022;629:122366. doi: 10.1016/j.ijpharm.2022.122366.
  • Guan Q, Ma Q, Zhao Y, et al. Cellulose derivatives as effective recrystallization inhibitor for ternary ritonavir solid dispersions: in vitro-in vivo evaluation. Carbohydr Polym. 2021;273:118562. doi: 10.1016/j.carbpol.2021.118562.
  • Saha SK, Joshi A, Singh R, et al. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Tec. 2023;81:104259. doi: 10.1016/j.jddst.2023.104259.
  • Shetty D, Yarlagadda DL, Brahmam B, et al. Investigating the influence of the type of polymer on sustaining the supersaturation from amorphous solid dispersions of apremilast and its pharmacokinetics. J Drug Deliv Sci Tec. 2023;84:104520. doi: 10.1016/j.jddst.2023.104520.
  • Hiew TN, Taylor LS. Combining drug salt formation with amorphous solid dispersions – a double edged sword. J Control Release. 2022;352:47–60. doi: 10.1016/j.jconrel.2022.09.056.
  • Yu C, Zhang C, Guan X, et al. The solid dispersion of resveratrol with enhanced dissolution and good system physical stability. J Drug Deliv Sci Tec. 2023;84:104507. doi: 10.1016/j.jddst.2023.104507.
  • Zhao P, Han W, Shu Y, et al. Liquid–liquid phase separation drug aggregate: merit for oral delivery of amorphous solid dispersions. J Control Release. 2023;353:42–50. doi: 10.1016/j.jconrel.2022.11.033.
  • Pan-On S, Dilokthornsakul P, Tiyaboonchai W. Trends in advanced oral drug delivery system for curcumin: a systematic review. J Control Release. 2022;348:335–345. doi: 10.1016/j.jconrel.2022.05.048.
  • Ahadian S, Finbloom JA, Mofidfar M, et al. Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev. 2020;157:37–62. doi: 10.1016/j.addr.2020.07.012.
  • Berardi A, Bisharat L, Quodbach J, et al. Advancing the understanding of the tablet disintegration phenomenon – an update on recent studies. Int J Pharmaceut. 2021;598:120390. doi: 10.1016/j.ijpharm.2021.120390.
  • Essa EA, Elmarakby AO, Donia A, et al. Controlled precipitation for enhanced dissolution rate of flurbiprofen: development of rapidly disintegrating tablets. Drug Dev Ind Pharm. 2017;43(9):1430–1439. doi: 10.1080/03639045.2017.1318905.
  • Huanbutta K, Sittikijyothin W. Development and characterization of seed gums from Tamarindus indica and Cassia fistula as disintegrating agent for fast disintegrating Thai cordial tablet. Asian J Pharm Sci. 2017;12(4):370–377. doi: 10.1016/j.ajps.2017.02.004.
  • Cilurzo F, Musazzi UM, Franzé S, et al. Orodispersible dosage forms: biopharmaceutical improvements and regulatory requirements. Drug Discov Today. 2018;23(2):251–259. doi: 10.1016/j.drudis.2017.10.003.
  • Xu Y, Yan G, Wen X, et al. Preparation, evaluation, and pharmacokinetics in beagle dogs of a taste-masked flunixin meglumine orally disintegrating tablet prepared using hot-melt extrusion technology and D-optimal mixture design. Eur J Pharm Sci. 2022;168:106019. doi: 10.1016/j.ejps.2021.106019.
  • Late S, Yu Y, Banga A. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets. Int J Pharm. 2009;365(1-2):4–11. doi: 10.1016/j.ijpharm.2008.08.010.
  • Fredholt F, Di Meo C, Sloth S, et al. Direct visualizing of paracetamol immediate release tablet disintegration in vivo and in vitro. Eur J Pharm Biopharm. 2022;180:63–70. doi: 10.1016/j.ejpb.2022.09.007.
  • Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. 2009;73(1):162–171. doi: 10.1016/j.ejpb.2009.04.005.
  • Rai PR, Tiwary AK, Rana V. Superior disintegrating properties of calcium cross-linked cassia fistula gum derivatives for fast dissolving tablets. Carbohyd Polym. 2012;87(2):1098–1104. doi: 10.1016/j.carbpol.2011.08.050.
  • Diab R, Canilho N, Pavel IA, et al. Silica-based systems for oral delivery of drugs, macromolecules and cells. Adv Colloid Interface Sci. 2017;249:346–362. doi: 10.1016/j.cis.2017.04.005.
  • Jia X, Chen J, Cheng H, et al. Use of surfactant-based amorphous solid dispersions for BDDCS class II drugs to enhance oral bioavailability: a case report of resveratrol. Int J Pharm. 2023;641:123059. doi: 10.1016/j.ijpharm.2023.123059.
  • Gaber DA, Alnwiser MA, Alotaibi NL, et al. Design and optimization of ganciclovir solid dispersion for improving its bioavailability. Drug Deliv. 2022;29(1):1836–1847. doi: 10.1080/10717544.2022.2083723.
  • Xi Z, Fei Y, Wang Y, et al. Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions. J Drug Deliv Sci Tec. 2023;83:104351. doi: 10.1016/j.jddst.2023.104351.
  • D'souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257–1275.
  • Zhang Y, Liu F, Cao Y, et al. Preparation and characterization of a solid dispersion of hexahydrocolupulone and its application in the preservation of fresh apple juice. Food Chem. 2023;424:136367. doi: 10.1016/j.foodchem.2023.136367.
  • Husseiny RA, Abu Lila AS, Abdallah MH, et al. Fast disintegrating tablet of valsartan for the treatment of pediatric hypertension: in vitro and in vivo evaluation. J Drug Deliv Sci Tec. 2018;43:194–200. doi: 10.1016/j.jddst.2017.10.014.
  • Crowley MM, Schroeder B, Fredersdorf A, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharmaceut. 2004;269(2):509–522.
  • Pereira MN, Schulte HL, Duarte N, et al. Solid effervescent formulations as new approach for topical minoxidil delivery. Eur J Pharm Sci. 2017;96:411–419.
  • Muñoz H, Castan H, Clares B, Ruiz MA. Obtaining fast dissolving disintegrating tablets with different doses of melatonin. Int J Pharm. 2014;467(1–2):84–89.
  • Patil S, Pandit A, Godbole A, et al. Chitosan based co-processed excipient for improved tableting. Carbohydr Polym Technol Appl. 2021;2:100071. doi: 10.1016/j.carpta.2021.100071.
  • Zhao H, Yu Y, Ni N, et al. A new parameter for characterization of tablet friability based on a systematical study of five excipients. Int J Pharm. 2022;611:121339. doi: 10.1016/j.ijpharm.2021.121339.
  • Zhao H, Zhao L, Lin X, et al. An update on microcrystalline cellulose in direct compression: functionality, critical material attributes, and co-processed excipients. Carbohydr Polym. 2022;278:118968. doi: 10.1016/j.carbpol.2021.118968.
  • Janssen PHM, Jaspers M, Meier R, et al. The effect of excipient particle size on the reduction of compactibility after roller compaction. Int J Pharm X. 2022;4:100117. doi: 10.1016/j.ijpx.2022.100117.
  • Hosseini A, Körber M, Bodmeier R. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile. Int J Pharm. 2013;457(2):503–509. doi: 10.1016/j.ijpharm.2013.07.042.
  • Ruhil S, Dahiya M, Kaur H, et al. New insights into the disintegration mechanism and disintegration profiling of rapidly disintegrating tablets (RDTs) by thermal imaging. Int J Pharm. 2022;611:121283. doi: 10.1016/j.ijpharm.2021.121283.
  • Wang F, Zhan J, Ma R, et al. Simultaneous improvement of the physical and biological properties of starch films by incorporating steviol glycoside-based solid dispersion. Carbohydr Polym. 2023;311:120766. doi: 10.1016/j.carbpol.2023.120766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.