124
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Doxorubicin-sanguinarine nanoparticles: formulation and evaluation of breast cancer cell apoptosis and cell cycle

, , , , , , , , & show all
Received 04 Nov 2023, Accepted 13 Dec 2023, Published online: 10 Jan 2024

References

  • Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer; 2020. [cited Feb 2021] https://gco.iarc.fr/today
  • WHO. Cancer FsAfhwwin-rf-sdc.
  • Basu P, Kumar GS. Sanguinarine and its role in chronic diseases. Adv Exp Med Biol. 2016;928:155–172. doi: 10.1007/978-3-319-41334-1_7.
  • Basu P, Kumar GS. Sanguinarine and its role in chronic diseases. In: Gupta SC, Prasad S, Aggarwal BB, editors. Advances in experimental medicine and biology: anti-inflammatory nutraceuticals and chronic diseases. Vol. 928. Cham: Springer International Publishing; 2016. pp. 155–172.
  • Prescott M, Mitchell J, Totti S, et al. Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: synergistic increase in toxicity in the presence of PANC-1 cells in vitro. Ultrason Sonochem. 2018;40(Pt B):72–80. doi: 10.1016/j.ultsonch.2017.05.018.
  • Eid SY, El-Readi MZ, Wink M. Synergism of three-drug combinations of sanguinarine and other plant secondary metabolites with digitonin and doxorubicin in multi-drug resistant cancer cells. Phytomedicine. 2012;19(14):1288–1297. doi: 10.1016/j.phymed.2012.08.010.
  • Jiang L, Wang X, Wang Y, et al. The synthesis and biological evaluation of sanguinarine derivatives as anti-non-small cell lung cancer agents. RSC Med Chem. 2020;11(2):293–296. doi: 10.1039/c9md00494g.
  • Sarkhosh-Inanlou R, Molaparast M, Mohammadzadeh A, et al. Sanguinarine enhances cisplatin sensitivity via glutathione depletion in cisplatin-resistant ovarian cancer (A2780) cells. Chem Biol Drug Des. 2020;95(2):215–223. doi: 10.1111/cbdd.13621.
  • Saeed MEM, Mahmoud N, Sugimoto Y, et al. Molecular determinants of sensitivity or resistance of cancer cells toward sanguinarine. Front Pharmacol. 2018;9:136. PMCPMC5834429. doi: 10.3389/fphar.2018.00136.
  • Wink M, Ashour ML, El-Readi MZ. Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Front Microbiol. 2012;3:130. doi: 10.3389/fmicb.2012.00130.
  • Eid SY, El-Readi MZ, Eldin EE, et al. Influence of combinations of digitonin with selected phenolics, terpenoids, and alkaloids on the expression and activity of P-glycoprotein in leukaemia and Colon cancer cells. Phytomedicine. 2013;21(1):47–61. doi: 10.1016/j.phymed.2013.07.019.
  • Eid SY, El-Readi MZ, Wink M. Carotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters. Phytomedicine. 2012;19(11):977–987. doi: 10.1016/j.phymed.2012.05.010.
  • Zeng L, Gowda BJ, Ahmed MG, et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer. 2023;22(1):10.
  • Dongsar TT, Dongsar TS, Abourehab MA, et al. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur Polym J. 2023;187:111898. doi: 10.1016/j.eurpolymj.2023.111898.
  • Kesharwani P, Sheikh A, Abourehab MA, et al. A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy. J Drug Delivery Sci Technol. 2023;80:104164. doi: 10.1016/j.jddst.2023.104164.
  • Dawoud M, Abourehab MA, Abdou R. Monoolein cubic nanoparticles as novel carriers for docetaxel. J Drug Delivery Sci Technol. 2020;56:101501. doi: 10.1016/j.jddst.2020.101501.
  • Akkın S, Varan G, Bilensoy E. A review on cancer immunotherapy and applications of nanotechnology to chemoimmunotherapy of different cancers. Molecules. 2021;26(11):3382. doi: 10.3390/molecules26113382.
  • Kesharwani P, Ma R, Sang L. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer. 2023;22(1):98.
  • Hussain Z, Abourehab MA, Khan S, et al. Silver nanoparticles: a promising nanoplatform for targeted delivery of therapeutics and optimized therapeutic efficacy. In: Metal nanoparticles for drug delivery and diagnostic applications. Boston: Elsevier; 2020. p. 141–173.
  • Sun Q, Li W, Li H, et al. Preparation, characterization and anti-ulcer efficacy of sanguinarine loaded solid lipid nanoparticles. Pharmacology. 2017;100(1-2):14–24. doi: 10.1159/000454882.
  • Gibbons SM, Jones E, Bearquiver A, et al. Human and environmental impacts on river sediment microbial communities. PLOS One. 2014;9(5):e97435–e97435. doi: 10.1371/journal.pone.0097435.
  • Kim IH, Park JH, Cheong IW, et al. Swelling and drug release behavior of tablets coated with aqueous hydroxypropyl methylcellulose phthalate (HPMCP) nanoparticles. J Control Release. 2003;89(2):225–233. doi: 10.1016/s0168-3659(03)00089-0.
  • Abdellatif AAH, Alhathloul SS, Aljohani ASM, et al. Green synthesis of silver nanoparticles incorporated aromatherapies utilized for their antioxidant and antimicrobial activities against some clinical bacterial isolates. Bioinorg Chem Appl. 2022;2022:2432758–2432714. doi: 10.1155/2022/2432758.
  • Abdellatif AAH, Tawfeek HM. Development and evaluation of fluorescent gold nanoparticles. Drug Dev Ind Pharm. 2018;44(10):1679–1684. doi: 10.1080/03639045.2018.1483400.
  • Imanparast F, Faramarzi MA, Paknejad M, et al. Preparation, optimization, and characterization of simvastatin nanoparticles by electrospraying: an artificial neural networks study. J Appl Polym Sci. 2016;133(28):4–11. doi: 10.1002/app.43602.
  • Abdellatif AAH, Alsharidah M, Al Rugaie O, et al. Silver nanoparticle-coated ethyl cellulose inhibits tumor necrosis factor-alpha of breast cancer cells. Drug Des Devel Ther. 2021;15:2035–2046. doi: 10.2147/DDDT.S310760.
  • Abdellatif AAH, Alturki HNH, Tawfeek HM. Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Sci Rep. 2021;11(1):84. doi: 10.1038/s41598-020-79834-6.
  • Abdellatif AAH, Rasheed Z, Alhowail AH, et al. Silver citrate nanoparticles inhibit PMA-Induced TNFalpha expression via deactivation of NF-kappaB activity in human cancer cell-lines, MCF-7. Int J Nanomed. 2020;15:8479–8493. doi: 10.2147/IJN.S274098.
  • Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, et al. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J Drug Delivery Sci Technol. 2020;56:101540. doi: 10.1016/j.jddst.2020.101540.
  • Abdellatif AAH, Younis MA, Alsharidah M, et al. Biomedical applications of quantum dots: overview, challenges, and clinical potential. Int J Nanomed. 2022;17:1951–1970. doi: 10.2147/IJN.S357980.
  • Abdellatif AAH, Younis MA, Alsowinea AF, et al. Lipid nanoparticles technology in vaccines: shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces. 2022;222:113111. doi: 10.1016/j.colsurfb.2022.113111.
  • Abdellatif AAH, Tolba NS, Alsharidah M, et al. PEG-4000 formed polymeric nanoparticles loaded with cetuximab downregulate p21 & stathmin-1 gene expression in cancer cell lines. Life Sci. 2022;300:120581. doi: 10.1016/j.lfs.2022.120403.
  • Abdellatif AAH, Alawadh SH, Bouazzaoui A, et al. Anthocyanins rich pomegranate cream as a topical formulation with anti-aging activity. J Dermatolog Treat. 2021;32(8):983–990. doi: 10.1080/09546634.2020.1721418.
  • Aljohani ASM, Abdellatif AAH, Rasheed Z, et al. Gold-Nanoparticle-Conjugated citrate inhibits tumor necrosis factor-alpha expression via suppression of nuclear factor kappa B (NF-kappaB) activation in breast cancer cells. J Biomed Nanotechnol. 2022;18(2):581–588. doi: 10.1166/jbn.2022.3266.
  • Abdellatif AA, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech. 2016;17(5):1067–1074. doi: 10.1208/s12249-015-0441-7.
  • Nour Eldin EEM, Nour Eldein MM, El-Readi MZ, et al. Evaluation of the diagnostic and predicative values of 8-Iso-Prostaglandin F2alpha as a biomarker of breast cancer. Oncol Res Treat. 2020;43(10):506–517. doi: 10.1159/000509671.
  • Nour Eldin EEM, El-Readi MZ, Nour Eldein MM, et al. 8-Hydroxy-2'-deoxyguanosine as a discriminatory biomarker for early detection of breast cancer. Clin Breast Cancer. 2019;19(2):e385–e393. doi: 10.1016/j.clbc.2018.12.013.
  • Eid SY, Althubiti MA, Abdallah ME, et al. The carotenoid fucoxanthin can sensitize multidrug resistant cancer cells to doxorubicin via induction of apoptosis, inhibition of multidrug resistance proteins and metabolic enzymes. Phytomedicine. 2020;77:153280. doi: 10.1016/j.phymed.2020.153280.
  • Abdallah ME, El-Readi MZ, Althubiti MA, et al. Tamoxifen and the PI3K inhibitor: LY294002 synergistically induce apoptosis and cell cycle arrest in breast cancer MCF-7 cells. Molecules. 2020;25(15):3355. doi: 10.3390/molecules25153355.
  • Abdalla AN, Di Stefano M, Poli G, et al. Co-Inhibition of P-gp and Hsp90 by an Isatin-Derived compound contributes to the increase of the chemosensitivity of MCF7/ADR-Resistant cells to doxorubicin. Molecules. 2021;27(1):90. doi: 10.3390/molecules27010090.
  • Almaimani RA, Aslam A, Ahmad J, et al. In vivo and in vitro enhanced tumoricidal effects of metformin, active vitamin D3, and 5-fluorouracil triple therapy against colon cancer by modulating the PI3K/akt/PTEN/mTOR network. Cancers. 2022;14(6):1538. doi: 10.3390/cancers14061538.
  • Abdellatif AAH, Aldalaen SM, Faisal W, et al. Somatostatin receptors as a new active targeting sites for nanoparticles. Saudi Pharm J. 2018;26(7):1051–1059. doi: 10.1016/j.jsps.2018.05.014.
  • Abdellatif AA, Zayed G, El-Bakry A, et al. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors. Drug Dev Ind Pharm. 2016;42(11):1782–1791. doi: 10.3109/03639045.2016.1173052.
  • Deshmukh K, Ahamed MB, Deshmukh R, et al. Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni KK, Cabibihan JJ, Ponnamma D, AlMaadeed MAA, Kim J, editors. Biopolymer composites in electronics. Oxford: Elsevier; 2017. pp. 27–128. doi: 10.1016/B978-0-12-809261-3.00003-6.
  • El-Badry M, Fetih G, Fathy M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in gelucire 50/13 and PEG4000. Saudi Pharm J. 2009;17(3):217–225. doi: 10.1016/j.jsps.2009.08.006.
  • Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm. 2019;572:118775. doi: 10.1016/j.ijpharm.2019.118775.
  • Bhaskar V, Prakash R, Devanna N. Development, characterization and evaluation of simvastatin solid lipid nanoparticles loaded transdermal patch. J Chem Pharm Res. 2016;9(2):702–708.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: 10.3390/pharmaceutics10020057.
  • Fissan H, Ristig S, Kaminski H, et al. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods. 2014;6(18):7324. doi: 10.1039/C4AY01203H.
  • Zheng T, Bott S, Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces. 2016;8(33):21585–21594. doi: 10.1021/acsami.6b06903.
  • Mock JJ, Barbic M, Smith DR, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116(15):6755–6759. doi: 10.1063/1.1462610.
  • Steinigeweg D, Schlücker S. Monodispersity and size control in the synthesis of 20-100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures. Chem Commun. 2012;48(69):8682–8684. doi: 10.1039/c2cc33850e.
  • Ranneh A-H, Iwao Y, Noguchi S, et al. The use of surfactants to enhance the solubility and stability of the water-insoluble anticancer drug SN38 into liquid crystalline phase nanoparticles. Int J Pharm. 2016;515(1-2):501–505. doi: 10.1016/j.ijpharm.2016.10.058.
  • Abdellatif AAH, Ibrahim MA, Amin MA, et al. Cetuximab conjugated with octreotide and entrapped calcium alginate-beads for targeting somatostatin receptors. Sci Rep. 2020;10(1):4736. doi: 10.1038/s41598-020-61605-y.
  • El-Say KM. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using draper-lin small composite design. Drug Des Devel Ther. 2016;10:825–839. doi: 10.2147/DDDT.S101900.
  • Li D, Rosito G, Slagle T. Structure-activity relationship: analyses of P-glycoprotein substrates and inhibitors [research support, non-U.S. Gov’t review]. J Clin Pharm Ther. 2003;38(6):445–449.
  • El-Readi MZ, Al-Abd AM, Althubiti MA, et al. Multiple molecular mechanisms to overcome multidrug resistance in cancer by natural secondary metabolites. Front Pharmacol. 2021;12:658513. doi: 10.3389/fphar.2021.658513.
  • Babich H, Zuckerbraun HL, Barber IB, et al. Cytotoxicity of sanguinarine chloride to cultured human cells from oral tissue. Pharmacol Toxicol. 1996;78(6):397–403. doi: 10.1111/j.1600-0773.1996.tb00225.x.
  • Schmeller T, Latz-Brüning B, Wink M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores [research support, non-U.S. Gov’t]. Phytochemistry. 1997;44(2):257–266. doi: 10.1016/s0031-9422(96)00545-6.
  • Stiborová M, Simánek V, Frei E, et al. DNA adduct formation from quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine as revealed by the 32P-postlabeling technique. Chem Biol Interact. 2002;140(3):231–242. doi: 10.1016/s0009-2797(02)00038-8.
  • Ding ZH, Tang SC, Weerasinghe P, et al. The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem Pharmacol. 2002;63(8):1415–1421. doi: 10.1016/s0006-2952(02)00902-4.
  • Chaturvedi MM, Kumar A, Darnay BG, et al. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation. J Biol Chem. 1997;272(48):30129–30134. doi: 10.1074/jbc.272.48.30129.
  • Wolff J, Knipling L. Antimicrotubule properties of benzophenanthridine alkaloids. Biochemistry. 1993;32(48):13334–13339. doi: 10.1021/bi00211a047.
  • Lee JS, Jung WK, Jeong MH, et al. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of bax/bcl-2 ratio and caspase-9-dependent pathway. Int J Toxicol. 2012;31(1):70–77. doi: 10.1177/1091581811423845.
  • Tsukamoto H, Kondo S, Mukudai Y, et al. Evaluation of anticancer activities of benzo[c]phenanthridine alkaloid sanguinarine in oral squamous cell carcinoma cell line [research support, non-U.S. Gov’t]. Anticancer Res. 2011;31(9):2841–2846.
  • Larsson DE, Wickström M, Hassan S, et al. The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro [research support, non-U.S. Gov’t]. Anticancer Res. 2010;30(1):149–156.
  • Vrba J, Dolezel P, Vicar J, et al. Cytotoxic activity of sanguinarine and dihydrosanguinarine in human promyelocytic leukemia HL-60 cells. Toxicol in Vitro. 2009;23(4):580–588. doi: 10.1016/j.tiv.2009.01.016.
  • Han MH, Yoo YH, Choi YH. Sanguinarine-induced apoptosis in human leukemia U937 cells via bcl-2 downregulation and caspase-3 activation. Chemotherapy. 2008;54(3):157–165. PubMed PMID: 18560221; eng. doi: 10.1159/000140359.
  • Halwani AA. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1):106. doi: 10.3390/pharmaceutics14010106.
  • Hałas-Wiśniewska M, Zielińska W, Izdebska M, et al. The synergistic effect of piperlongumine and sanguinarine on the non-small lung cancer. Molecules. 2020;25(13):3045. doi: 10.3390/molecules25133045.
  • Zhang B, Wang X, Deng J, et al. p53-dependent upregulation of miR-16-2 by sanguinarine induces cell cycle arrest and apoptosis in hepatocellular carcinoma. Cancer Lett. 2019;459:50–58. doi: 10.1016/j.canlet.2019.05.042.
  • Malikova J, Zdarilova A, Hlobilkova A. Effects of sanguinarine and chelerythrine on the cell cycle and apoptosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150(1):5–12. doi: 10.5507/bp.2006.001.
  • Malíková J, Zdařilová A, Hlobilková A, et al. The effect of chelerythrine on cell growth, apoptosis, and cell cycle in human normal and cancer cells in comparison with sanguinarine. Cell Biol Toxicol. 2006;22(6):439–453. doi: 10.1007/s10565-006-0109-x.
  • Adhami VM, Aziz MH, Reagan-Shaw SR, et al. Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther. 2004;3(8):933–940.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.