29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An insight into viscosity and conductivity in the formulation of co-axial electrospun Carica papaya leaf extract

, , , &
Received 06 Mar 2023, Accepted 19 Mar 2024, Published online: 09 May 2024

References

  • Doğan G, Başal G, Bayraktar O, et al. Bioactive sheath/core nanofibers containing olive leaf extract. Microsc Res Tech. 2016;79(1):38–49. doi: 10.1002/jemt.22603.
  • Tan SM, Teoh XY, Le Hwang J, et al. Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Delivery Sci Technol. 2022;76:103761. doi: 10.1016/j.jddst.2022.103761.
  • Jia X, Zhao C, Li P, et al. Sustained release of VEGF by coaxial electrospun dextran/PLGA fibrous membranes in vascular tissue engineering. J Biomater Sci Polym Ed. 2011;22(13):1811–1827. doi: 10.1163/092050610X528534.
  • Jiang H, Wang L, Zhu K. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J Control Release. 2014;193:296–303. doi: 10.1016/j.jconrel.2014.04.025.
  • Huang W, Zou T, Li S, et al. Drug-loaded zein nanofibers ­prepared using a modified coaxial electrospinning process. Aaps Pharmscitech. 2013;14(2):675–681. doi: 10.1208/s12249-013-9953-1.
  • Wildy M, Lu P. Electrospun nanofibers: shaping the future of controlled and responsive drug delivery. Materials. 2023;16(22):7062. doi: 10.3390/ma16227062.
  • Gupta MS, Kumar TP, Gowda DV. Orodispersible thin film: a new patient-centered innovation. J Drug Delivery Sci Technol. 2020;59:101843. doi: 10.1016/j.jddst.2020.101843.
  • Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci. 2015;75:2–9. doi: 10.1016/j.ejps.2015.02.015.
  • Alam A, Karmakar R, Rengan AK, et al. Nanofiber-based systems for stimuli-responsive and dual drug delivery: present scenario and the way forward. ACS Biomater Sci Eng. 2023;9(6):3160–3184. doi: 10.1021/acsbiomaterials.3c00363.
  • Shahriar SS, Mondal J, Hasan MN, et al. Electrospinning nanofibers for therapeutics delivery. Nanomaterials. 2019;9(4):532. doi: 10.3390/nano9040532.
  • Alshaya HA, Alfahad AJ, Alsulaihem FM, et al. Fast-dissolving nifedipine and atorvastatin calcium electrospun nanofibers as a potential buccal delivery system. Pharmaceutics. 2022;14(2):358. doi: 10.3390/pharmaceutics14020358.
  • Chachlioutaki K, Tzimtzimis EK, Tzetzis D, et al. Electrospun orodispersible films of isoniazid for pediatric tuberculosis treatment. Pharmaceutics. 2020;12(5):470. doi: 10.3390/pharmaceutics12050470.
  • Li Z, Wang C, Li Z, et al. Effects of working parameters on electrospinning. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers. 2013:15–28. SpringerBriefs in Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36427-3_2
  • Taylor GI. Electrically driven jets. Proc R Soc Lond A Math Phys Sci. 1969;313(1515):453–475.
  • Haider S, Al-Zeghayer Y, Ahmed Ali FA, et al. Highly aligned narrow diameter chitosan electrospun nanofibers. J Polym Res. 2013;20(4):1–11. doi: 10.1007/s10965-013-0105-9.
  • McKee MG, Wilkes GL, Colby RH, et al. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules. 2004;37(5):1760–1767. doi: 10.1021/ma035689h.
  • Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat. 1995;35(2–3):151–160. doi: 10.1016/0304-3886(95)00041-8.
  • Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci. 1971;36(1):71–79. doi: 10.1016/0021-9797(71)90241-4.
  • Akram BL, Ameen Hasan RM. The comparison of retention between hot curing and fluid denture base acrylic resin (in vivo). Al-Kitab J Pure Sci. 2018;2(2):150–161. doi: 10.32441/kjps.02.02.p10.
  • Moussa T, Tam K, Tiu C. Molecular interpretation of the behaviour of polyisobutylene in different solvents. Rheol Acta. 1990;29(2):117–126. doi: 10.1007/BF01332378.
  • Hwang YJ, Choi S, Kim HS. Structural deformation of PVDF nanoweb due to electrospinning behavior affected by solvent ratio. e-Polymers. 2018;18(4):339–345. doi: 10.1515/epoly-2018-0037.
  • Collins G, Federici J, Imura Y, et al. Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. J Appl Phys. 2012;111(4):044701. doi: 10.1063/1.3682464.
  • Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J. 2005;41(3):409–421. doi: 10.1016/j.eurpolymj.2004.10.010.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. doi: 10.1021/acs.jnatprod.9b01285.
  • Ahmad I, Aqil F, Ahmad F, et al. Herbal medicines: prospects and constraints. Modern Phytomedicine: Turning Medicinal Plants into Drugs. 2006:59–77.
  • O’Hare TJ, Williams DJ. Papaya as a medicinal plant. Genetics and genomics of papaya. New York, NY, United States: Springer; 2013. p. 391–407.
  • Kong YR, Jong YX, Balakrishnan M, et al. Beneficial role of carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology . 2021;10(4):287. doi: 10.3390/biology10040287.
  • Mohd Abd Razak MR, Mohmad Misnan N, Md Jelas NH, et al. The effect of freeze-dried Carica papaya leaf juice treatment on NS1 and viremia levels in dengue fever mice model. BMC Complement Altern Med. 2018;18(1):320. doi: 10.1186/s12906-018-2390-7.
  • Nandini C, Madhunapantula SV, Bovilla VR, et al. Platelet enhancement by Carica papaya L. leaf fractions in cyclophosphamide induced thrombocytopenic rats is due to elevated expression of CD110 receptor on megakaryocytes. J Ethnopharmacol. 2021;275:114074. doi: 10.1016/j.jep.2021.114074.
  • Razak M, Norahmad N, Jelas N, et al. Immunomodulatory activities of Carica papaya L. leaf juice in a non-lethal, symptomatic dengue mouse model pathogens. 2021;10:501.
  • Patil S, Shetty S, Bhide R, et al. Evaluation of platelet augmentation activity of Carica papaya leaf aqueous extract in rats. J Pharmacogn Phytochem. 2013;1(5):57–60.
  • Sharma A, Sharma R, Sharma M, et al. Carica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects. Oxid Med Cell Longev, 2022;2022: 2451733. doi: 10.1155/2022/2451733.
  • Zhang X, Wang X, Wang M, et al. Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave. PLOS One. 2019;14(1):e0200174. doi: 10.1371/journal.pone.0200174.
  • Nugroho A, Heryani H, Choi JS, et al. Identification and quantification of flavonoids in carica papaya leaf and peroxynitrite-scavenging activity. Asian Pacific J Trop Biomed. 2017;7(3):208–213. doi: 10.1016/j.apjtb.2016.12.009.
  • Kumar PV. Dengue and drawbacks of marketed carica papaya leaves supplements. Int J Green Pharm. 2016;10(1):S72-84.
  • Guo J, Hou J, Hu J, et al. Recent advances in β-cyclodextrin-based materials for chiral recognition. Chem Commun. 2023;59(60):9157–9166. doi: 10.1039/D3CC01962D.
  • Deepam LA, Guja J, Sudhakar SA, et al. Synthesis and applications of β–cyclodextrin incorporated Carica Papaya leaf extract electrospun nanofibers. EJCHEM. 2022;3(1):87–99. doi: 10.24018/ejchem.2022.3.1.70.
  • Rameshthangam P, Kumar P, Muthulakshmi M, et al. Anti-cancer and bactericidal activity of electrospun chitosan/poly (ethylene oxide)/papaya nanofibres. Appl Nanosci. 2022;13(9):6105–6113. doi: 10.1007/s13204-022-02669-2.
  • Information NCfB. PubChem Compound Summary for CID 129662530,.Chitosan 2023 [cited 2023 February, 20]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/129662530.
  • Gelardi G, Mantellato S, Marchon D, et al. Chemistry of chemical admixtures. Science and technology of concrete admixtures: Woodhead Publishing; 2016. p. 149–218.
  • Ahlawat J, Kumar V, Gopinath P. Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing. Mater Sci Eng C Mater Biol Appl. 2019;103:109834. doi: 10.1016/j.msec.2019.109834.
  • Kamsani NH, Haris MS, Pandey M, et al. Biomedical application of responsive ‘smart’electrospun nanofibers in drug delivery system: a minireview. Arabian J Chem. 2021;14(7):103199. doi: 10.1016/j.arabjc.2021.103199.
  • Akhgari A, Shakib Z, Sanati S. A review on electrospun nanofibers for oral drug delivery. Nanomed J. 2017;4(4):197–207.
  • Nikam VK, Kotade K, Gaware V, et al. Eudragit a versatile polymer: a review. Pharmacologyonline. 2011;1(5):152–164.
  • Reda RI, Wen MM, El-Kamel AH. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomed. 2017;12:2335–2351. doi: 10.2147/IJN.S131253.
  • Tonglairoum P, Chaijaroenluk W, Rojanarata T, et al. Development and characterization of propranolol selective molecular imprinted polymer composite electrospun nanofiber membrane. Aaps Pharmscitech. 2013;14(2):838–846. doi: 10.1208/s12249-013-9970-0.
  • Zhang S, Kawakami K, Yamamoto M, et al. Coaxial electrospray formulations for improving oral absorption of a poorly water-soluble drug. Mol Pharm. 2011;8(3):807–813. doi: 10.1021/mp100401d.
  • Shen X, Yu D, Zhu L, et al. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for Colon-targeted drug delivery. Int J Pharm. 2011; 408(1–2):200–207. doi: 10.1016/j.ijpharm.2011.01.058.
  • Schoeller J, Itel F, Wuertz-Kozak K, et al. pH-responsive electrospun nanofibers and their applications. Polym Rev. 2022;62(2):351–399. doi: 10.1080/15583724.2021.1939372.
  • Li J, Liu Y, Abdelhakim HE. Drug delivery applications of coaxial electrospun nanofibres in cancer therapy. Molecules. 2022;27(6):1803. doi: 10.3390/molecules27061803.
  • Ding Y, Li W, Zhang F, et al. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv Funct Materials. 2019;29(2):1802852. doi: 10.1002/adfm.201802852.
  • Repanas A, Andriopoulou S, Glasmacher B. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J Drug Delivery Sci Technol. 2016;31:137–146. doi: 10.1016/j.jddst.2015.12.007.
  • Featherstone S. Ingredients used in the preparation of canned foods. A complete course in canning and related processes. 2015:147–211.
  • Tiefenbacher KF. Technology of main ingredients—sweeteners and lipids. Wafer and Waffle. 2017:123–225.
  • Sotoyama M, Uchida S, Tanaka S, et al. Citric acid suppresses the bitter taste of olopatadine hydrochloride orally disintegrating tablets. Biol Pharm Bull. 2017;40(4):451–457. doi: 10.1248/bpb.b16-00828.
  • Shakya A. Bioactive phytochemicals as inhibitors against dengue virus protein NS-5 methyltransferase: in silico molecular docking approach: bioactive phytochemicals as inhibitors against dengue virus protein NS-5 methyltransferase. J Ayurveda and Holist Med. 2023;11(3):253–267.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717.
  • Vlachou M, Siamidi A, Kyriakou S. Electrospinning and drug delivery. Electrospinning and electrospraying-techniques and applications. 2019:1–22.
  • Williams GR, Raimi-Abraham BT, Luo C. Nanofibres in drug delivery. United Kingdom. UCL Press; 2018.
  • Tan SM, Chan SY. Solvent System Effect on the Viscosity and Conductivity of Electrospinnable Polymer Solutions for Incorporation of Medicinal Herbal Extract 2022 [cited 2022 20 October]. Available from: https://www.ipcphs.com/conference-book.
  • Xue N, Li X, Bertulli C, et al. Rapid patterning of 1-D collagenous topography as an ECM protein fibril platform for image cytometry. PLOS One. 2014;9(4):e93590. doi: 10.1371/journal.pone.0093590.
  • Hong Y, Zhou H, Qian W, et al. Impact of the α-methyl group (α-CH3) on the aggregation states and interfacial isotherms of poly (acrylates) monolayers at the water surface. J Phys Chem C. 2017;121(36):19816–19827. doi: 10.1021/acs.jpcc.7b06051.
  • Ryu S-Y, Kwak S-Y. Role of electrical conductivity of spinning solution on enhancement of electrospinnability of polyamide 6, 6 nanofibers. J Nanosci Nanotechnol. 2013;13(6):4193–4202. doi: 10.1166/jnn.2013.5863.
  • Istifli ES, Netz PA, Sihoglu Tepe A, et al. In silico analysis of the interactions of certain flavonoids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. J Biomol Struct Dyn. 2022;40(6):2460–2474. doi: 10.1080/07391102.2020.1840444.
  • Laghari M, Darwis Y, Memon AH, et al. Nanoformulations and clinical trial candidates as probably effective and safe therapy for tuberculosis. Trop J Pharm Res. 2016;15(1):201–211. doi: 10.4314/tjpr.v15i1.28.
  • Omer RA, Ikram FS. Effect of addition of zirconium oxide nanoparticles on flexural strength and porosity of heat cure acrylic resin. Al-Kitab J Pure Sci. 2018;2(2):96–119. doi: 10.32441/kjps.02.02.p7.
  • Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524. doi: 10.3389/fphar.2020.00524.
  • Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: a review. J Control Release. 2021;334:463–484. doi: 10.1016/j.jconrel.2021.03.033.
  • Farhaj S, Conway BR, Ghori MU. Nanofibres in drug delivery applications. Fibers. 2023;11(2):21. doi: 10.3390/fib11020021.
  • Chen K, Li Y, Li Y, et al. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J Nanobiotechnol. 2023;21(1):237. doi: 10.1186/s12951-023-01987-z.
  • Fadare OA, Durosinmi OM, Fadare R, et al. ATR-FTIR and HPLC spectroscopic studies and evaluation of mineral content of Carica papaya leaves and flowers. 2015;1:1–7.
  • De Lima S, de Oliveira H. Composites of enteric polymer/magnetite: preparation and application in release processes. JAppl Solution Chem Model. 2012;1(2):94–99.
  • Hancock BC, Dupuis Y, Thibert R. Determination of the ­viscosity of an amorphous drug using thermomechanical analysis (TMA). Pharm Res. 1999;16(5):672–675. doi: 10.1023/a:1018816406470.
  • Ishigami A, Watanabe K, Kurose T, et al. Physical and morphological properties of tough and transparent PMMA-based blends modified with polyrotaxane. Polymers . 2020;12(8):1790. doi: 10.3390/polym12081790.
  • Vandenbergh J, Junkers T, Olabisi O, et al. Polyacrylates. Handbook of Thermoplastics. 2016;2:169-192.
  • Qin Y. Applications of advanced technologies in the development of functional medical textile materials. Yimin Qin (Ed), In Woodhead Publishing Series in Textiles. Medical Textile Materials. Woodhead Publishing. 2016;1:55–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.