44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Non-pigmented laser hair removal mediated via sepia melanin nanoparticles: in vivo study on albino mice

, ORCID Icon & ORCID Icon
Received 17 Jan 2024, Accepted 13 May 2024, Published online: 22 Jun 2024

References

  • Krasniqi A, McClurg DP, Gillespie KJ, et al. Efficacy of lasers and light sources in long-term hair reduction: a systematic review. J Cosmet Laser Ther. 2022;24(1-5):1–8. doi: 10.1080/14764172.2022.2075899.
  • Roosen GF, Westgate GE, Philpott M, et al. Temporary hair removal by low fluence photoepilation: histological study on biopsies and cultured human hair follicles. Lasers Surg Med. 2008;40(8):520–528. doi: 10.1002/lsm.20679.
  • Gold MH, Weiss E, Biron J. Novel laser hair removal in all skin types. J Cosmet Dermatol. 2023;22(4):1261–1265. doi: 10.1111/jocd.15674.
  • Shin H, Yoon JS, Koh W, et al. Nonpigmented hair removal using photodynamic therapy in animal model. Lasers Surg Med. 2016;48(8):748–762. doi: 10.1002/lsm.22570.
  • Wang LF, Rhim JW. Isolation and characterization of melanin from black garlic and sepia ink. LWT. 2019;99:17–23. doi: 10.1016/j.lwt.2018.09.033.
  • Wang W, Jing T, Xia X, et al. Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomater Sci. 2019;7(10):4060–4074. doi: 10.1039/c9bm01052a.
  • Xie W, Pakdel E, Liang Y, et al. Natural eumelanin and its derivatives as multifunctional materials for bioinspired applications: a review. Biomacromolecules. 2019;20(12):4312–4331. doi: 10.1021/acs.biomac.9b01413.
  • Xin C, Cheng C, Hou K, et al. A novel melanin complex displayed the affinity to HepG2 cell membrane and nucleus. Mater Sci Eng C Mater Biol Appl. 2021;122:111923. doi: 10.1016/j.msec.2021.111923.
  • Caldas M, Santos AC, Veiga F, et al. Melanin nanoparticles as a promising tool for biomedical applications – a review. Acta Biomater. 2020;105:26–43. doi: 10.1016/j.actbio.2020.01.044.
  • Wang X, Sheng J, Yang M. Melanin-based nanoparticles in biomedical applications: from molecular imaging to treatment of diseases. Chin Chem Lett. 2019;30(3):533–540. doi: 10.1016/j.cclet.2018.10.010.
  • Manivasagan P, Venkatesan J, Senthilkumar K, et al. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int J Biol Macromol. 2013;58:263–274. doi: 10.1016/j.ijbiomac.2013.04.041.
  • Kim MA, Yoon S D, Kim EM, et al. Natural melanin-loaded nanovesicles for near-infrared mediated tumor ablation by photothermal conversion. Nanotechnology. 2018;29(41):415101. doi: 10.1088/1361-6528/aad4da.
  • Mongkol V, Preechaphonkul W, Rattanadecho P. Photo-thermo-mechanical model for laser hair removal simulation using multiphysics coupling of light transport, heat transfer, and mechanical deformation (case study). Case Stud Therm Eng. 2023;41:102562. doi: 10.1016/j.csite.2022.102562.
  • Joshi A, Kaur J, Kulkarni R, et al. In-vitro and Ex-vivo evaluation of Raloxifene hydrochloride delivery using nano-transfersome based formulations. J Drug Deliv Sci Technol. 2018;45:151–158. doi: 10.1016/j.jddst.2018.02.006.
  • Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12(9):855. doi: 10.3390/pharmaceutics12090855.
  • Gupta I, Adin SN, Rashid MA, et al. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: in vitro prospect and in vivo therapeutic efficacy for the management of epilepsy. Pharmaceutics. 2023;15(2):641. doi: 10.3390/pharmaceutics15020641.
  • Hady MA, Darwish AB, Abdel-Aziz MS, et al. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf B Biointerfaces. 2022;211:112304. doi: 10.1016/j.colsurfb.2021.112304.
  • Ibrahim SS, Abd-Allah H. Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: design, in vitro characterization, and in vivo anti-inflammatory evaluation. Int J Pharm. 2022;625:122068. doi: 10.1016/j.ijpharm.2022.122068.
  • De Leeuw J, Van Der Beek N, Neugebauer D. Permanent hair removal of white, grey and light blond hair after laser treatment combined with melanin encapsulated liposomes. Lipoxôme®. 2010.
  • Li L, Hoffman RM. Topical liposome delivery of molecules t.o hair follicles in mice. Vol 14. 1997.
  • El Ghoubary NM, Fadel M, Fadeel DAA. Self-assembled surfactant-based nanoparticles as a platform for solubilization and enhancement of the photothermal activity of sepia melanin. Beni-Suef Univ J Basic Appl Sci. 2023;12(1):13. doi: 10.1186/s43088-023-00353-0.
  • Ansari MD, Khan I, Solanki P, et al. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Technol. 2022;68:103102. doi: 10.1016/j.jddst.2022.103102.
  • Kakkar S, Kaur IP. Spanlastics-A novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011;413(1-2):202–210. doi: 10.1016/j.ijpharm.2011.04.027.
  • Elazreg R, Soliman M, Mansour S, et al. Preparation and evaluation of mucoadhesive gellan gum in-situ gels for the ocular delivery of carbonic anhydrase inhibitor nanovesicles. Int J Pharm Sci Res. 2015;6(9):3761. doi: 10.13040/IJPSR.0975-8232.6(9).3761-74.
  • Fadel M, Kassab K, Samy N, et al. Nanovesicular photodynamic clinical treatment of resistant plantar warts. Curr Drug Deliv. 2020;17(5):396–405. doi: 10.2174/1567201817666200324142221.
  • Hsieh WC, Fang CW, Suhail M, et al. Improved skin permeability and whitening effect of catechin-loaded transfersomes through topical delivery. Int J Pharm. 2021;607:121030. doi: 10.1016/j.ijpharm.2021.121030.
  • Wang G, Sukumar S. Characteristics and antitumor activity of polysorbate 80 curcumin micelles preparation by cloud point cooling. J Drug Deliv Sci Technol. 2020;59 (10):101871. doi: 10.1016/j.jddst.2020.101871.
  • Mary DCruz CE, Bhide PJ, Kumar L, et al. Novel nano spanlastic carrier system for buccal delivery of lacidipine. J Drug Deliv Sci Technol. 2022;68. doi: 10.1016/j.jddst.2021.103061.
  • Abdelkader H, Wu Z, Al-Kassas R, et al. Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int J Pharm. 2012;433(1-2):142–148. doi: 10.1016/j.ijpharm.2012.05.011.
  • Goyal G, Garg T, Malik B, et al. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv. 2015;22(8):1027–1042. doi: 10.3109/10717544.2013.855277.
  • Badria F, Mazyed E. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-acetyl-11-keto-β-boswellic acid): Statistical optimization, in vitro characterization, and ex vivo permeation study. Drug Des Devel Ther. 2020;14:3697–3721. doi: 10.2147/DDDT.S265167.
  • Zhang L, Sheng D, Wang D, et al. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics. 2018;8(6):1591–1606. doi: 10.7150/thno.22430.
  • Albash R, El-Nabarawi MA, Refai H, et al. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: invitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine. 2019;14:6555–6574. doi: 10.2147/IJN.S213613.
  • Fernández-García R, Lalatsa A, Statts L, et al. Transferosomes as nanocarriers for drugs across the skin: quality by design from lab to industrial scale. Int J Pharm. 2020;573:118817. doi: 10.1016/j.ijpharm.2019.118817.
  • Elmowafy E, El-Gogary RI, Ragai MH, et al. Novel antipsoriatic fluidized spanlastic nanovesicles: in vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm. 2019;568:118556. doi: 10.1016/j.ijpharm.2019.118556.
  • Ibrahim NA, Abdel Fadeel DA, Sadek A, et al. Intralesional vitamin D3 versus new topical photodynamic therapy in recalcitrant palmoplanter warts Randomized comparative controlled study. Photodiagnosis Photodyn Ther. 2020;32:101979. doi: 10.1016/j.pdpdt.2020.101979.
  • Fahmy AM, El-Setouhy DA, Ibrahim AB, et al. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25(1):12–22. doi: 10.1080/10717544.2017.1410262.
  • Mosallam S, Sheta NM, Elshafeey AH, et al. Fabrication of highly deformable bilosomes for enhancing the topical delivery of terconazole: in vitro characterization, microbiological evaluation, and in vivo skin deposition study. AAPS PharmSciTech. 2021;22(2):74. doi: 10.1208/s12249-021-01924-z.
  • Sharma M, Malik G, Gulati D, et al. Formulation and evaluation of fusidic acid based transferosome for burn wound infection. Mater Today Proc. 2022;68(4):836–841. doi: 10.1016/j.matpr.2022.06.260.
  • Brammann C, Bornemann C, Kannewurf R, et al. Solid lipid microparticles for hair follicle targeting of adapalene and benzoyl peroxide - Release through targeted erosion. J Drug Deliv Sci Technol. 2020;60. doi: 10.1016/j.jddst.2020.101990.
  • Gu Y, Bian Q, Zhou Y, et al. Hair follicle-targeting drug ­delivery strategies for the management of hair follicle-associated disorders. Asian J Pharm Sci. 2022;17(3):333–352. doi: 10.1016/j.ajps.2022.04.003.
  • Tabbakhian M, Tavakoli N, Jaafari MR, et al. Enhancement of follicular delivery of finasteride by liposomes and niosomes. 1. In vitro permeation and in vivo deposition studies using hamster flank and ear models. Int J Pharm. 2006;323(1-2):1–10. doi: 10.1016/j.ijpharm.2006.05.041.
  • Wosicka H, Cal K. Targeting to the hair follicles: current status and potential. J Dermatol Sci. 2010;57(2):83–89. doi: 10.1016/j.jdermsci.2009.12.005.
  • Tampucci S, Paganini V, Burgalassi S, et al. Nanostructured drug delivery systems for targeting 5-α-reductase inhibitors to the hair follicle. Pharmaceutics. 2022;14(2):286. doi: 10.3390/pharmaceutics14020286.
  • Goldberg DJ, Marmur ES, Hussain M. Treatment of terminal and vellus non-pigmented hairs with an optical/bipolar radiofrequency energy source - With and without pre-treatment using topical aminolevulinic acid. J Cosmet Laser Ther. 2005;7(1):25–28. doi: 10.1080/147641700510037734.
  • Ali MHM, Hashem MM, Zaher A, et al. Photodynamic therapy for hair removal. QScience Connect. 2013;2013(2013):16. doi: 10.5339/connect.2013.16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.