0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications

, , , &
Received 07 Mar 2024, Accepted 24 Jul 2024, Accepted author version posted online: 01 Aug 2024
Accepted author version

References

  • Abdel-Naby, W., Cole, B., Liu, A., Liu, J., Wan, P., Schreiner, R., … Rosenblatt, M. I. (2017). Treatment with solubilized silk-derived protein (SDP) enhances rabbit corneal epithelial wound healing. PloS one, 12(11), e0188154.
  • Al-Mohaithef, M., Abdelmohsen, S. A., Algameel, M., & Abdelwahed, A. Y. (2022). Screening for identification of patients at high risk for diabetes-related foot ulcers: a cross-sectional study. Journal of International Medical Research, 50(3), 03000605221087815.
  • Anders, C. B., Lawton, T. M., Smith, H. L., Garret, J., Doucette, M. M., & Ammons, M. C. B. (2022). Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage phenotypes. Journal of Leukocyte Biology, 111(3), 667-693.
  • Aramwit, P., Kanokpanont, S., De-Eknamkul, W., Kamei, K., & Srichana, T. (2009). The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. Journal of Biomaterials Science, Polymer Edition, 20(9), 1295-1306.
  • Aramwit, P., Palapinyo, S., Srichana, T., Chottanapund, S., & Muangman, P. (2013). Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Archives of dermatological research, 305, 585-594.
  • Aramwit, P., & Sangcakul, A. (2007). The effects of sericin cream on wound healing in rats. Bioscience, biotechnology, and biochemistry, 71(10), 2473-2477.
  • Arango, M. C., Montoya, Y., Peresin, M. S., Bustamante, J., & Álvarez-López, C. (2021). Silk sericin as a biomaterial for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(16), 1115-1129.
  • Bakadia, B. M., Lamboni, L., Ahmed, A. A. Q., Zheng, R., Boni, B. O. O., Shi, Z., … Qi, F. (2023). Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: Systemic evaluation. Smart Materials in Medicine, 4, 37-58.
  • Behera, A., Subbiah, S. K., prasad srinivasan1 Shenbhagaraman, G., Ramalingam, M. K. D. J., Babu, V., & Arakandanallur, V. D. A REVIEW ON RECENT PROGRESS IN BIODEGRADABLE HYDROGEL FROM SERICIN AND GELATIN FOR BIOMEDICAL APPLICATIONS.
  • Belvedere, R., Novizio, N., Morello, S., & Petrella, A. (2022). The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Scientific Reports, 12(1), 11041.
  • Bettle III, G., Bell, D. P., & Bakewell, S. J. (2024). A Novel Comprehensive Therapeutic Approach to the Challenges of Chronic Wounds: A Brief Review and Clinical Experience Report. Advances in Therapy, 41(2), 492-508.
  • Bhat, S. (2019). SRB's Manual of Surgery: Jaypee Brothers Medical Publishers.
  • Bhattacharjee, P., Kundu, B., Naskar, D., Kim, H.-W., Maiti, T. K., Bhattacharya, D., & Kundu, S. C. (2017). Silk scaffolds in bone tissue engineering: An overview. Acta biomaterialia, 63, 1-17.
  • Bhoopathy, J., Dharmalingam, S., Sathyaraj, W. V., Rajendran, S., Rymbai, S., Senthil, R., & Atchudan, R. (2023). Sericin/human placenta-derived extracellular matrix scaffolds for cutaneous wound treatment—preparation, characterization, in vitro and in vivo analyses. Pharmaceutics, 15(2), 362.
  • Bouhlouli, M., Pourhadi, M., Karami, F., Talebi, Z., Ranjbari, J., & Khojasteh, A. (2021). Applications of bacterial cellulose as a natural polymer in tissue engineering. ASAIO Journal, 67(7), 709-720.
  • Bucciarelli, A., & Motta, A. (2022). Use of Bombyx mori silk fibroin in tissue engineering: From cocoons to medical devices, challenges, and future perspectives. Biomaterials Advances, 139, 212982.
  • Cao, X., Lin, X., Li, N., Zhao, X., Zhou, M., & Zhao, Y. (2023). Animal tissue-derived biomaterials for promoting wound healing. Materials Horizons.
  • Chae, J. W., Lee, D., Osman, A., Kang, B., Hwang, J., Kim, W., … Won, S. M. (2024). Silk Fibroin, Sericin, and Conductive Silk Composites for Skin-Attachable Transient Electronics. ACS Applied Electronic Materials, 6(3), 1746-1756.
  • Chamkouri, H., & Chamkouri, M. (2021). A review of hydrogels, their properties and applications in medicine. Am. J. Biomed. Sci. Res, 11(6), 485-493.
  • Chaudhary, M. R., Chaudhary, S., Sharma, Y., Singh, T. A., Mishra, A. K., Sharma, S., & Mehdi, M. M. (2023). Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology, 1-54.
  • Chen, S., Lu, J., You, T., & Sun, D. (2021). Metal-organic frameworks for improving wound healing. Coordination Chemistry Reviews, 439, 213929.
  • Dan, A. K., Aamna, B., De, S., Pereira-Silva, M., Sahu, R., Paiva-Santos, A. C., & Parida, S. (2022). Sericin nanoparticles: future nanocarrier for target-specific delivery of chemotherapeutic drugs. Journal of Molecular Liquids, 120717.
  • Das, B. (2023). Role of debridement and its biocompatibility in antimicrobial wound dressings Antimicrobial Dressings (pp. 89-112): Elsevier.
  • Das, G., Shin, H.-S., Campos, E. V. R., Fraceto, L. F., del Pilar Rodriguez-Torres, M., Mariano, K. C. F., … Patra, J. K. (2021). Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. Journal of Nanobiotechnology, 19, 1-22.
  • Dash, R., Acharya, C., Bindu, P., & Kundu, S. (2008). Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB reports, 41(3), 236-241.
  • Dave, P. (2024). The Challenges of Chronic Wound Care and Management. Asian Journal of Dental and Health Sciences, 4(1), 45-50.
  • de Souza, G. S., de Jesus Sonego, L., Mundim, A. C. S., de Miranda Moraes, J., Sales-Campos, H., & Lorenzón, E. N. (2022). Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries. Peptides, 148, 170707.
  • Dong, M., Mao, Y., Zhao, Z., Zhang, J., Zhu, L., Chen, L., & Cao, L. (2022). Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: in vitro and in vivo evaluations. International Wound Journal, 19(3), 679-691.
  • Ebenebe, C., Okweche, S., Okore, O., Okpoko, V., Amobi, M., Eze, J. N., … Okonkwo, M. (2021). Arthropods in Cosmetics, Pharmaceuticals and Medicine: A Review. Arthropods-Are They Beneficial for Mankind, 1-21.
  • El-Ashram, S., El-Samad, L. M., Basha, A. A., & El Wakil, A. (2021). Naturally-derived targeted therapy for wound healing: Beyond classical strategies. Pharmacological Research, 170, 105749.
  • El Ayadi, A., Jay, J. W., & Prasai, A. (2020). Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. International journal of molecular sciences, 21(3), 1105.
  • Ersel, M., Uyanikgil, Y., Akarca, F. K., Ozcete, E., Altunci, Y. A., Karabey, F., … Cetin, E. O. (2016). Effects of silk sericin on incision wound healing in a dorsal skin flap wound healing rat model. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 22, 1064.
  • Farooq, M., Khan, A. W., Kim, M. S., & Choi, S. (2021). The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration. Cells, 10(11), 3242.
  • Fatahian, R., Fatahian, A., Fatahian, E., & Fatahian, H. (2021). A critical review on application of silk sericin and its mechanical properties in various industries. Journal of Research and Applications in Mechanical Engineering, 9(2).
  • Floren, M., Bonani, W., Dharmarajan, A., Motta, A., Migliaresi, C., & Tan, W. (2016). Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Acta biomaterialia, 31, 156-166.
  • Frangogiannis, N. G. (2020). Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine, 217(3).
  • Gajbhiye, S., & Wairkar, S. (2022). Collagen fabricated delivery systems for wound healing: A new roadmap. Biomaterials Advances, 213152.
  • Ghalei, S., & Handa, H. (2022). A review on antibacterial silk fibroin-based biomaterials: Current state and prospects. Materials today chemistry, 23, 100673.
  • Gil, E. S., Panilaitis, B., Bellas, E., & Kaplan, D. L. (2013). Functionalized silk biomaterials for wound healing. Advanced healthcare materials, 2(1), 206-217.
  • Guo, C., Li, C., & Kaplan, D. L. (2020). Enzymatic degradation of bombyx mori silk materials: a review. Biomacromolecules, 21(5), 1678-1686.
  • Guo, K., Zhang, X., Zhao, D., Qin, L., Jiang, W., Hu, W., … Zhao, P. (2022). Identification and characterization of sericin5 reveals non-cocoon silk sericin components with high β-sheet content and adhesive strength. Acta biomaterialia, 150, 96-110.
  • Guo, X., Yi, H., Li, T. C., Wang, Y., Wang, H., & Chen, X. (2021). Role of vascular endothelial growth factor (VEGF) in human embryo implantation: clinical implications. Biomolecules, 11(2), 253.
  • Hoffman, B. A. J., Pumford, E. A., Enueme, A. I., Fetah, K. L., Friedl, O. M., & Kasko, A. M. (2023). Engineered macromolecular Toll-like receptor agents and assemblies. Trends in Biotechnology.
  • Homaeigohar, S., & Boccaccini, A. R. (2020). Antibacterial biohybrid nanofibers for wound dressings. Acta biomaterialia, 107, 25-49.
  • Hu, D., Li, T., Wang, Y., Feng, M., & Sun, J. (2023). Silk sericin as building blocks of bioactive materials for advanced therapeutics. Journal of Controlled Release, 353, 303-316.
  • Huang, J., Heng, S., Zhang, W., Liu, Y., Xia, T., Ji, C., & Zhang, L.-j. (2022). Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Paper presented at the Seminars in Cell & Developmental Biology.
  • Jankau, J., Błażyńska‐Spychalska, A., Kubiak, K., Jędrzejczak-Krzepkowska, M., Pankiewicz, T., Ludwicka, K., … Pęksa, R. (2022). Bacterial cellulose properties fulfilling requirements for a biomaterial of choice in reconstructive surgery and wound healing. Frontiers in Bioengineering and Biotechnology, 9, 805053.
  • Jiang, Y., Xu, X., Xiao, L., Wang, L., & Qiang, S. (2022). The role of microRNA in the inflammatory response of wound healing. Frontiers in Immunology, 13, 852419.
  • Jo, Y.-Y., Kim, D.-W., Choi, J.-Y., & Kim, S.-G. (2019). 4-Hexylresorcinol and silk sericin increase the expression of vascular endothelial growth factor via different pathways. Scientific Reports, 9(1), 3448.
  • Jo, Y.-Y., Kweon, H., & Oh, J.-H. (2020). Sericin for tissue engineering. Applied Sciences, 10(23), 8457.
  • Kanoujia, J., Dubey, R., Debgharia, S., Sisodia, P., Mohanalakshmi, S., Bhatt, S., … Kishore, A. (2023). Mini-Review on Analytical Methods Applied for Analysis and Characterization of Sericin. Current Analytical Chemistry, 19(2), 119-129.
  • Kant, V., Sharma, M., Jangir, B. L., & Kumar, V. (2022). Acceleration of wound healing by quercetin in diabetic rats requires mitigation of oxidative stress and stimulation of the proliferative phase. Biotechnic & Histochemistry, 97(6), 461-472.
  • Kaufman, N. E., Dhingra, S., Jois, S. D., & Vicente, M. d. G. H. (2021). Molecular targeting of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR). Molecules, 26(4), 1076.
  • Kaur, G., Narayanan, G., Garg, D., Sachdev, A., & Matai, I. (2022). Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Applied Bio Materials, 5(5), 2069-2106.
  • Khosropanah, M. H., Vaghasloo, M. A., Shakibaei, M., Mueller, A. L., Kajbafzadeh, A. M., Amani, L., … Zolbin, M. M. (2022). Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). Journal of tissue engineering and regenerative medicine, 16(2), 91-109.
  • Kim, D.-W., Jo, Y.-Y., Garagiola, U., Choi, J.-Y., Kang, Y.-J., Oh, J.-H., & Kim, S.-G. (2020). Increased level of vascular endothelial growth factors by 4-hexylresorcinol is mediated by transforming growth factor-β1 and accelerates capillary regeneration in the burns in diabetic animals. International journal of molecular sciences, 21(10), 3473.
  • Kim, Y. S., Kim, D. W., Kim, S.-G., & Lee, S. K. (2020). 4-hexylresorcinol-induced protein expression changes in human umbilical cord vein endothelial cells as determined by immunoprecipitation high-performance liquid chromatography. PloS one, 15(12), e0243975.
  • Kostag, M., Jedvert, K., & El Seoud, O. A. (2021). Engineering of sustainable biomaterial composites from cellulose and silk fibroin: Fundamentals and applications. International Journal of Biological Macromolecules, 167, 687-718.
  • Kotwani, A., Joshi, J., & Kaloni, D. (2021). Pharmaceutical effluent: a critical link in the interconnected ecosystem promoting antimicrobial resistance. Environmental Science and Pollution Research, 28(25), 32111-32124.
  • Kundu, B., Rajkhowa, R., Kundu, S. C., & Wang, X. (2013). Silk fibroin biomaterials for tissue regenerations. Advanced drug delivery reviews, 65(4), 457-470.
  • Li, S., Jiang, M., Zhang, Y., Xie, X., Li, W., Ming, P., … Chen, J. (2023). Multi-functional carboxymethyl chitosan/sericin protein/halloysite composite sponge with efficient antibacterial and hemostatic properties for accelerating wound healing. International Journal of Biological Macromolecules, 234, 123357.
  • Liu, J., Shi, L., Deng, Y., Zou, M., Cai, B., Song, Y., … Wang, L. (2022). Silk sericin-based materials for biomedical applications. Biomaterials, 121638.
  • Liu, Y., Fan, J., Lv, M., She, K., Sun, J., Lu, Q., … Wang, G. (2021). Photocrosslinking silver nanoparticles–aloe vera–silk fibroin composite hydrogel for treatment of full-thickness cutaneous wounds. Regenerative biomaterials, 8(6), rbab048.
  • Luttrell, T. (2024). Trauma and Inflammation of Soft Tissue: Rehabilitation and Wound Healing and Remodeling of Collagen Foundations of Orthopedic Physical Therapy (pp. 2-37): Routledge.
  • Ma, H., Li, J., Zhou, J., Luo, Q., Wu, W., Mao, Z., & Ma, W. (2022). Screen-printed carbon black/recycled Sericin@ Fabrics for wearable sensors to monitor sweat loss. ACS Applied Materials & Interfaces, 14(9), 11813-11819.
  • Manesa, K. C., Kebede, T. G., Dube, S., & Nindi, M. M. (2020). Profiling of silk sericin from cocoons of three southern African wild silk moths with a focus on their antimicrobial and antioxidant properties. Materials, 13(24), 5706.
  • Markiewicz-Gospodarek, A., Kozioł, M., Tobiasz, M., Baj, J., Radzikowska-Büchner, E., & Przekora, A. (2022). Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. International journal of environmental research and public health, 19(3), 1338.
  • Mavrouli, M., Mavroulis, S., Lekkas, E., & Tsakris, A. (2023). The impact of earthquakes on public health: A narrative review of infectious diseases in the post-disaster period aiming to disaster risk reduction. Microorganisms, 11(2), 419.
  • Mukherjee, S., Krishnan, A., Athira, R., Kasoju, N., & Sah, M. K. (2022). Silk fibroin and silk sericin in skin tissue engineering and wound healing: Retrospect and prospects Natural Polymers in Wound Healing and Repair (pp. 301-331): Elsevier.
  • Nagai, N., Iwai, Y., Deguchi, S., Otake, H., Kanai, K., Okamoto, N., & Shimomura, Y. (2019). Therapeutic potential of a combination of magnesium hydroxide nanoparticles and sericin for epithelial corneal wound healing. Nanomaterials, 9(5), 768.
  • Nandikolmath, V., Lakshmi Kanth, R., Padhy, S. K., Padhy, M. R., & Patil, S. J. (2021). Preparation of Bio-Bandage from Human Platelet Lysate Admixed with Sericin Polymer for Efficient Wound Healing. International Journal of Medical Research & Health Sciences, 10(2), 8-20.
  • Narayanan, K. B., Bhaskar, R., Sudhakar, K., Nam, D. H., & Han, S. S. (2023). Polydopamine-Functionalized Bacterial Cellulose as Hydrogel Scaffolds for Skin Tissue Engineering. Gels, 9(8), 656.
  • Nirenjen, S., Narayanan, J., Tamilanban, T., Subramaniyan, V., Chitra, V., Fuloria, N. K., … Gupta, G. (2023). Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes. Frontiers in Immunology, 14, 1216321.
  • Norahan, M. H., Pedroza-González, S. C., Sánchez-Salazar, M. G., Álvarez, M. M., & de Santiago, G. T. (2023). Structural and biological engineering of 3D hydrogels for wound healing. Bioactive Materials, 24, 197-235.
  • Nourian Dehkordi, A., Mirahmadi Babaheydari, F., Chehelgerdi, M., & Raeisi Dehkordi, S. (2019). Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem cell research & therapy, 10(1), 1-20.
  • Oh, S., Park, J., Nam, J., Hyun, Y., Jin, H.-J., & Kwak, H. W. (2021). Antioxidant and UV-blocking glucose-crosslinked sericin films with enhanced structural integrity. Reactive and Functional Polymers, 165, 104942.
  • Oley, M. H., Oley, M. C., Tjandra, D. E., Sedu, S. W., Sumarauw, E. R., Aling, D. M. R., … Faruk, M. (2020). Hyperbaric oxygen therapy in the healing process of foot ulcers in diabetic type 2 patients marked by interleukin 6, vascular endothelial growth factor, and PEDIS score: A randomized controlled trial study. International Journal of Surgery Open, 27, 154-161.
  • Oliveira, C., Sousa, D., Teixeira, J. A., Ferreira-Santos, P., & Botelho, C. M. (2023). Polymeric biomaterials for wound healing. Frontiers in bioengineering and biotechnology, 11, 1136077.
  • Paladini, F., & Pollini, M. (2019). Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials, 12(16), 2540.
  • Pancu, D. F., Scurtu, A., Macasoi, I. G., Marti, D., Mioc, M., Soica, C., … Dehelean, C. (2021). Antibiotics: conventional therapy and natural compounds with antibacterial activity—a pharmaco-toxicological screening. Antibiotics, 10(4), 401.
  • Pankongadisak, P., & Suwantong, O. (2019). Enhanced properties of injectable chitosan-based thermogelling hydrogels by silk fibroin and longan seed extract for bone tissue engineering. International Journal of Biological Macromolecules, 138, 412-424.
  • Park, Y. R., Sultan, M. T., Park, H. J., Lee, J. M., Ju, H. W., Lee, O. J., … Park, C. H. (2018). NF-κB signaling is key in the wound healing processes of silk fibroin. Acta biomaterialia, 67, 183-195.
  • Piipponen, M., Li, D., & Landén, N. X. (2020). The immune functions of keratinocytes in skin wound healing. International journal of molecular sciences, 21(22), 8790.
  • Pires, P. C., Mascarenhas-Melo, F., Pedrosa, K., Lopes, D., Lopes, J., Macário-Soares, A., … Paiva-Santos, A. C. (2023). Polymer-based biomaterials for pharmaceutical and biomedical applications: A focus on topical drug administration. European Polymer Journal, 111868.
  • Poljšak, N., Kreft, S., & Kočevar Glavač, N. (2020). Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phytotherapy research, 34(2), 254-269.
  • Rai, V., & Agrawal, D. K. (2023). Role of Transcription Factors and MicroRNAs in Regulating Fibroblast Reprogramming in Wound Healing. Journal of bioinformatics and systems biology: Open access, 6(2), 110.
  • Ranakoti, L., Gupta, M. K., & Rakesh, P. K. (2019). Silk and silk-based composites: opportunities and challenges. Processing of Green composites, 91-106.
  • Saad, M., El-Samad, L. M., Gomaa, R. A., Augustyniak, M., & Hassan, M. A. (2023). A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. International Journal of Biological Macromolecules, 126067.
  • Sadat, Z., Farrokhi-Hajiabad, F., Lalebeigi, F., Naderi, N., Gorab, M. G., Cohan, R. A., … Maleki, A. (2022). A comprehensive review on the applications of carbon-based nanostructures in wound healing: From antibacterial aspects to cell growth stimulation. Biomaterials Science, 10(24), 6911-6938.
  • Sah, D. K., Khoi, P. N., Li, S., Arjunan, A., Jeong, J.-U., & Jung, Y. D. (2022). (-)-Epigallocatechin-3-Gallate Prevents IL-1β-Induced uPAR Expression and Invasiveness via the Suppression of NF-κB and AP-1 in Human Bladder Cancer Cells. International journal of molecular sciences, 23(22), 14008.
  • Schäfer, S., Aavani, F., Köpf, M., Drinic, A., Stürmer, E. K., Fuest, S., … Smeets, R. (2023). Silk proteins in reconstructive surgery: Do they possess an inherent antibacterial activity? A systematic review. Wound Repair and Regeneration, 31(1), 99-110.
  • Seidi, K., Ayoubi-Joshaghani, M. H., Azizi, M., Javaheri, T., Jaymand, M., Alizadeh, E., … Hamblin, M. R. (2021). Bioinspired hydrogels build a bridge from bench to bedside. Nano Today, 39, 101157.
  • Seo, S.-J., Das, G., Shin, H.-S., & Patra, J. K. (2023). Silk Sericin Protein Materials: Characteristics and Applications in Food-Sector Industries. International journal of molecular sciences, 24(5), 4951.
  • Shankar, S., Murthy, A. N., Rachitha, P., Raghavendra, V. B., Sunayana, N., Chinnathambi, A., … Pugazhendhi, A. (2023). Silk sericin conjugated magnesium oxide nanoparticles for its antioxidant, anti-aging, and anti-biofilm activities. Environmental Research, 223, 115421.
  • Sharma, A., Khanna, S., Kaur, G., & Singh, I. (2021). Medicinal plants and their components for wound healing applications. Future Journal of Pharmaceutical Sciences, 7(1), 1-13.
  • Sharma, V., Rattan, M., & Chauhan, S. (2022). Potential use of sericultural by products: A review. Pharma Innov, 1154-1158.
  • Shree, G. M., Sherlin, S. F., Madhavan, S., & Allwin, S. J. (2023). Silk Sericin and its Food application: A Review. Research Journal of Pharmacy and Technology, 16(4), 2068-2074.
  • Silva, A. S., Costa, E. C., Reis, S., Spencer, C., Calhelha, R. C., Miguel, S. P., … Coutinho, P. (2022). Silk sericin: a promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers, 14(22), 4931.
  • Sinha, A., Parida, P., Ananta, S., Jena, K., & Sathyanarayana, K. (2022). SERICIN-A GIFT OF NATURE: ITS APPLICATIONS. Plant Archives (09725210).
  • Sleiman, L., Lazăr, A.-D., Albu-Kaya, M., Marin, M. M., Kaya, D. A., Vasile, O.-R., & Dinescu, S. (2024). Development and Investigation of an Innovative 3D Biohybrid Based on Collagen and Silk Sericin Enriched with Flavonoids for Potential Wound Healing Applications. Polymers, 16(12), 1627.
  • Smith, R., Russo, J., Fiegel, J., & Brogden, N. (2020). Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics, 9(2), 56.
  • Song, I.-B., Han, H.-J., & Kwon, J. (2020). Immune-enhancing effects of gamma-irradiated sericin. Food Science and Biotechnology, 29(7), 969-976.
  • Stepp, M. A., & Menko, A. S. (2021). Immune responses to injury and their links to eye disease. Translational Research, 236, 52-71.
  • Suryawanshi, R., Kanoujia, J., Parashar, P., & Saraf, S. (2020). Sericin: A versatile protein biopolymer with therapeutic significance. Current Pharmaceutical Design, 26(42), 5414-5429.
  • Talukdar, M., Nath, O., & Deb, P. (2021). Enhancing barrier properties of biodegradable film by reinforcing with 2D heterostructure. Applied Surface Science, 541, 148464.
  • Tan, D., Zhu, W., Liu, L., Pan, Y., Xu, Y., Huang, Q., … Rao, L. (2023). In situ formed scaffold with royal jelly-derived extracellular vesicles for wound healing. Theranostics, 13(9), 2811.
  • Tan, M. L. L., Chin, J. S., Madden, L., & Becker, D. L. (2023). Challenges faced in developing an ideal chronic wound model. Expert Opinion on Drug Discovery, 18(1), 99-114.
  • Tao, G., Cai, R., Wang, Y., Liu, L., Zuo, H., Zhao, P., … He, H. (2019). Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Materials & Design, 180, 107940.
  • Thanusha, A., Mohanty, S., Dinda, A. K., & Koul, V. (2020). Fabrication and evaluation of gelatin/hyaluronic acid/chondroitin sulfate/asiatic acid based biopolymeric scaffold for the treatment of second-degree burn wounds–Wistar rat model study. Biomedical Materials, 15(5), 055016.
  • Thomas, D. C., Tsu, C. L., Nain, R. A., Arsat, N., Fun, S. S., & Lah, N. A. S. N. (2021). The role of debridement in wound bed preparation in chronic wound: A narrative review. Annals of medicine and surgery, 71, 102876.
  • Tosun, A. S., Gündoğdu, N. A., Taş, F., & Ateş, S. (2022). Experiences, thoughts, and feelings of patients with a diabetic foot ulcer in Turkey: A qualitative descriptive study. Journal of Vascular Nursing, 40(3), 140-147.
  • Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 12(8), 735.
  • Vatanpour, V., Teber, O., Mehrabi, M., & Koyuncu, I. (2023). Polyvinyl alcohol-based separation membranes: A comprehensive review on fabrication techniques, applications and future prospective. Materials Today Chemistry, 28, 101381.
  • Vidya, M., & Rajagopal, S. (2021). Silk fibroin: a promising tool for wound healing and skin regeneration. International Journal of Polymer Science, 2021(1), 9069924.
  • Wang, F., Li, Z., Guo, J., Liu, L., Fu, H., Yao, J., … Draczynski, Z. (2021). Highly strong, tough, and stretchable conductive hydrogels based on silk sericin-mediated multiple physical interactions for flexible sensors. ACS Applied Polymer Materials, 4(1), 618-626.
  • Wang, Y., Wang, Z., & Dong, Y. (2023). Collagen-based biomaterials for tissue engineering. ACS Biomaterials Science & Engineering, 9(3), 1132-1150.
  • Wu, L.-W., Chen, W.-L., Huang, S.-M., & Chan, J. Y.-H. (2019). Platelet‐derived growth factor‐AA is a substantial factor in the ability of adipose‐derived stem cells and endothelial progenitor cells to enhance wound healing. The FASEB Journal, 33(2), 2388-2395.
  • Xiao, T., Yan, Z., Xiao, S., & Xia, Y. (2020). Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem cell research & therapy, 11(1), 1-9.
  • Xiaojie, W., Banda, J., Qi, H., Chang, A. K., Bwalya, C., Chao, L., & Li, X. (2022). Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine & growth factor reviews, 66, 26-37.
  • Yang, C., Yao, L., & Zhang, L. (2023). Silk sericin-based biomaterials shine in food and pharmaceutical industries. Smart Materials in Medicine.
  • Zeng, Z., Zhu, M., Chen, L., Zhang, Y., Lu, T., Deng, Y., … Xiong, R. (2022). Design the molecule structures to achieve functional advantages of hydrogel wound dressings: Advances and strategies. Composites Part B: Engineering, 110313.
  • Zhang, F., Zhang, Z., Zhu, X., Kang, E.-T., & Neoh, K.-G. (2008). Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials, 29(36), 4751-4759.
  • Zhang, Y., Sheng, R., Chen, J., Wang, H., Zhu, Y., Cao, Z., … Chen, Z. (2023). Silk fibroin and sericin differentially potentiate the paracrine and regenerative functions of stem cells through multiomics analysis. Advanced Materials, 35(20), 2210517.
  • Zhang, Y., Shi, N., He, L., Wang, S., Li, X., Lu, S., … Niu, H. (2021). Silk sericin activates mild immune response and increases antibody production. Journal of Biomedical Nanotechnology, 17(12), 2433-2443.
  • Zheng, Y., Wu, J., Zhu, Y., & Wu, C. (2023). Inorganic-based biomaterials for rapid hemostasis and wound healing. Chemical Science.
  • Zhou, S., Xie, M., Su, J., Cai, B., Li, J., & Zhang, K. (2023). New insights into balancing wound healing and scarless skin repair. Journal of Tissue Engineering, 14, 20417314231185848.
  • Zhu, J., Tang, C., Luo, F., Yin, S., & Yang, X. (2022). Topical application of zein-silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis. Materials Today Chemistry, 24, 100802.
  • Zhu, Y., Liu, H., Qin, S., Yang, C., Lv, Q., Wang, Z., & Wang, L. (2022). Antibacterial sericin cryogels promote hemostasis by facilitating the activation of coagulation pathway and platelets. Advanced Healthcare Materials, 11(11), 2102717.
  • Zubair, M., & Ahmad, J. (2019). Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review. Reviews in Endocrine and Metabolic Disorders, 20, 207-217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.