126
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Pine sawdust as stimulator of the microbial community in post-arable afforested soil

, , &
Pages 427-441 | Received 20 Aug 2015, Accepted 03 Jul 2016, Published online: 29 Jul 2016

References

  • Aira M, Monroy F, Domínguez J. 2006. Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol. 52:738–747.
  • Aislabie J, Deslippe JR. 2013. Soil microbes and their contribution to soil services: ecosystem services in New Zealand: conditions and trends. Lincoln: Manaaki Whenua Press.
  • Alam MZ, Sultana M, Anwar MN. 2011. Isolation, identification and characterization of four cellulolytic actinomycetes and their cellulases. Aust J Biol Sci. 6:159–173.
  • Anderson I, Abt B, Lykidis A, Klenk H-P, Kyrpides N, Ivanova N. 2012. Genomics of aerobic cellulose utilization systems in actinobacteria. PLoS ONE. 7:e39331.
  • Austin AT, Ballaré CL. 2010. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. PNAS. 107:4618–4622.
  • Bardgett RD, Freeman C, Ostle NJ. 2008. Microbial contributions to climate change through carbon cycle feedbacks. Int Soc Microb Ecol. 2:805–814.
  • Bekele A, Kellman L, Beltrami H. 2007. Soil profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada. For Ecol Manag. 242:587–597.
  • Błaszczyk M. 2010. Mikrobiologia środowisk [Environmental microbiology]. Warsaw: PWN. Polish.
  • Brzeski MW, Szczech M. 1999. Effect of continuous soil amendment with coniferous sawdust on nematodes and microorganisms. Nemat Medit. 27:159–166.
  • Cho J, Giovannoni SJ. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol. 70:432–440.
  • Eschen R, Mortimer SR, Lawson CS, Edwards AR, Brook AJ, Igual JM. 2007. Carbon addition alters vegetation composition on ex-arable fields. J Appl Ecol. 44:95–104.
  • Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology. 88:1354–1364.
  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 450:277–280.
  • Garnier P, Néel C, Aita C, Recous S, Lafolie F, Mary B. 2003. Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation. Eur J Soil Sci. 54:555–568.
  • Gonthier P, Garbelotto M. 2013. Reducing the threat of emerging infectious diseases of forest trees - mini review. CAB Rev. 8:1–2.
  • Gordienko S. 1990. Conceptual model of the functional structure of autochthonous component in soil microbial organisms communities. Ekológia (CSSR). 9:429–439.
  • Grabieńska– Łoniewska A. 1999. Ćwiczenia laboratoryjne z mikrobiologii ogólnej [Laboratory skills in microbiology]. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej. Polish.
  • Gulledge J, Schimel JP. 2000. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in interior Alaska. Ecosystems. 3:269–282.
  • Han S-H, Kang B-R, Lee J-H, Kim H-J, Park J-Y, Kim J-J, Kim Y-C. 2012. Isolation and characterization of oligotrophic bacteria possessing induced systemic disease resistance against plant pathogens. Plant Pathol J. 28:68–74.
  • Hattori R, Hattori T. 1980. Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J Gen Appl Microb. 26:1–14.
  • Hendricks CW, Doyle JD, Hugley B. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl Environ Microb. 61:2016–2019.
  • Heyndrickx M. 2011. The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Appl Environ Soil Sci. 2011:1–11.
  • Hu SJ, Van Bruggen AHC, Grünwald NJ. 1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Appl Soil Ecol. 13:21–30.
  • Kaczmarek Z, Wolna-Maruwka A, Jakubus M. 2008. Changes of the number of selected microorganism groups and enzymatic activity in the soil inoculated with effective microorganisms (EM). J Res Applic Agr Eng. 53:122–127.
  • Koch AL. 2001. Oligotrophs versus copiotrophs. BioEssays. 23:657–661.
  • Kwaśna H, Brzeski MW, Sierota Z. 2001. Drobnoustroje środowiska glebowego – aspekty fizjologiczne, biochemiczne, genetyczne [Microorganisms of the soil environment - physiological, biochemical, genetic aspects]: Mikroorganizmy środowiska glebowego odłogujących gruntów porolnych – zmiany w zbiorowiskach grzybów i nicieni po dodaniu trocin iglastych [Soil microorganisms in abandoned farm soils – changes in fungal and nematodes community after sawdust addition]. Toruń: Adam Marszałek Press. Polish.
  • Kwaśna H, Sierota Z. 1999. Structure of fungal communities in barren post agricultural soil 1-and 2-years after pine sawdust application. Phytopath Pol. 17:13–21.
  • Kwaśna H, Sierota Z, Bateman GL. 2000. Fungal communities in fallow soil before and after amending with pine sawdust. Appl Soil Ecol. 14:177–182.
  • Lane DJ. 1991. Nucleic acid techniques in bacterial systematics: 16S/23S rRNA sequencing. New York (NY): John Wiley and Sons.
  • Lavelle P, Lattaud C, Trigo D, Barois I. 1995. Mutualism and biodiversity in soils. Plant Soil. 170:23–33.
  • Lu W, Zhang W, Bai Y, Fu Y, Chen J, Geng X, Wang Y, Xiao M. 2010. A genetically engineered Pseudomonas fluorescens strain possesses the dual activity against phytopathogenic fungi and insects. J Microbiol Biotechnol. 20:281–286.
  • Magill AH, Aber JD. 2000. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biol Bioch. 32:597–601.
  • Małecka M, Hilszczańska D. 2015. Influence of resting and pine sawdust application on chemical changes in post-agricultural soil and the ectomycorrhizal community of growing Scots pine saplings. Forest Res Pap. 76:265–272.
  • Małecka M, Kwaśna H. 2015. Effect of Scots pine sawdust amendment on abundance and diversity of culturable fungi in soil. Pol J Environ Stud. 24:2515–2524.
  • Małecka M, Kwaśna H, Szewczyk W. 2015. Fungal communities in barren forest soil after amendment with different wood substrates and their possible effects on trees’, pathogens, insects and nematodes. J Plant Prot Res. 55:301–311.
  • Mendes IC, Bandick AK, Dick RP, Bottomley PJ. 1999. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci Soc Am J. 63:873–881.
  • Narayanasamy P. 2010. Microbial plant pathogens-detection and disease diagnosis volume 2: bacterial and phytoplasmal pathogens. Netherlands: Springer.
  • Neher DA. 1999. Soil community composition and ecosystem processes comparing agricultural ecosystems with natural ecosystems. Agrofor Sys. 45:159–185.
  • Nowak A, Michalcewicz W, Jakubiszyn B. 1993. Liczebność bakterii, grzybów, promieniowców oraz biomasa mikroorganizmów w glebie [Amount and biomass of bacteria, fungi and actinomycetes in soil]. Zesz Nauk Ak Rol Szczecin. 57:101–111. Polish.
  • Overby ST, Hart SC, Neary DG. 2003. The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect: impacts of natural disturbance on soil carbon dynamics in forest ecosystems. Boca Raton (FL): CRC Press.
  • Padmanabhan V, Prabakaran G, Paily KP, Balaraman K. 2005. Toxicity of a mosquitocidal metabolite of Pseudomonas fluorescens on larvae & pupae of the house fly, Musca domestica. Indian J Med Res. 121:116–119.
  • Pietikäinen J, Pettersson M, Bååth E. 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microb Ecol. 52:49–58.
  • Pratt JE. 2000. Effect of inoculum density and borate concentration in a stump treatment trial against Heterobasidion annosum. Forest Pathol. 30:277–283.
  • Ramirez KS, Craine JM, Fierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol. 18:1918–1927.
  • Saha N, Wirth S, Ulrich A. 2013. Cellulolytic bacterial biodiversity in long-term manure experimental sites. Afr J Agric Res. 8:299–307.
  • Shahzad T, Chenu C, Repinçay C, Mougin C, Ollier J-L, Fontaine S. 2012. Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biol Biochem. 51:73–80.
  • Shankar N, Panchapakesan A, Bhandari S, Ravishankar HN. 2014. Simultaneous cellulose hydrolysis and bio-electricity generation in a mediatorless Microbial Fuel Cell using a Bacillus flexus strain isolated from wastewater. Res Biotechnol. 5:06–12.
  • Sierota Z. 2013. Heterobasidion annosum on Poland’s former agricultural lands - scope of menace and prevention. Sci Res Ess. 8:2298–2305.
  • Sierota Z, Kwaśna H. 1998a. Changes in fungal communities in barren post agricultural soil enriched with pine sawdust. Folia For Pol. 40:85–94.
  • Sierota Z, Kwaśna H. 1998b. Influence of sawdust of pine (P. sylvestris L.) on structure of soil fungi communities on post agricultural land. Acta Mycol. 33:77–90.
  • Spencer M, Ryub C-M, Yanga K-Y, Kimc Y, Kloepperb JW, Andersona AJ. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol Mol Plant Pathol. 63:27–34.
  • Strickland MS, Rousk J. 2010. Considering fungal: bacterialdominance in soils - methods, controls, and ecosystem implications. Soil Biol Biochem. 42:1385–1395.
  • Tiessen H, Stewart JWB, Hunt HW. 1984. Concepts of soil organic matter transformations in relation to organo-mineral particle size fractions. Plant Soil. 76:287–295.
  • Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B. 2011. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohyd Polym. 83:891–897.
  • Van Veen JA, Paul EA. 1981. Organic C dynamics in grassland soils, backround information and computer simulation. Can J Soil Sci. 6:185–201.
  • Vardhan S, Yadav AK, Pandey AK, Arora DK. 2013. Diversity analysis of biocontrol Bacillus isolated from rhizospheric soil of rice-wheat (Oryza sativa-Triticum aestivum L.) at India. J Antibiot. 66:485–490.
  • Venkatachalam S, Sivaprakash M, Gowdaman V, Prabagaran SR. 2014. Bioprospecting of cellulase producing extremophilic bacterial isolates from India. Br Microbiol Res J. 4:142–154.
  • Walsh UF, Morrissey JP, O’Gara F. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol. 12:289–295.
  • Weyman-Kaczmarkowa W. 1995. Interdependencies between oligotrophic and copiotrophic bacteria in soils of different mechanical structure. Pol J Soil Sci. 29:62–72.
  • Wood SA, Almaraz M, Bradford MA, McGuire KL, Naeem S, Neill C, Palm CA, Tully KL, Zhou J. 2015. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture. Front Microbiol. 6:90.
  • Wright MS, Cornelius ML. 2012. Mortality and repellent effects of microbial pathogens on Coptotermes formosanus (Isoptera: Rhinotermitidae). BMC Microbiol. 12:291.
  • Wyszkowska J, Kucharski J. 2005. Nawożenie słomą i trocinami jako czynnik niwelujący oddziaływanie zanieczyszczenia gleby kadmem na drobnoustroje [The fertilization with straw and sawdust as the limiting factor the influence of cadmium in soil on microorganisms]. Zesz Probl Post Nauk Rol. 506:557–568. Polish.
  • Zaborowska M, Wyszkowska J, Kucharski J. 2006. Liczebność bakterii oligotroficznych i kopitroficznych w glebie zanieczyszczonej cynkiem nawożonej słomą i trocinami [The number of oligotrophic and copiotrophic bacteria in zinc contaminated soil fertilized by straw and sawdust]. Acta Agr Silv Ser Agr. 49:515–527. Polish.
  • Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B. 2014. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE. 9:e85301.
  • Zvyagintsev DG. 1991. Methods of soil microbiology and biochemistry. Moscow: Moscow University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.