466
Views
8
CrossRef citations to date
0
Altmetric
Articles

Interaction between grapevines and trees: effects on water relations, nitrogen nutrition, and wine

, , , , , & show all
Pages 224-239 | Received 01 Dec 2017, Accepted 21 Jun 2018, Published online: 09 Jul 2018

References

  • Alleweldt G, Eibach R, Rühl E. 1982. Untersuchungen zum Gaswechsel der Rebe I. Einfluß von Temperatur, Blattalter und Tageszeit auf Nettophotosynthese und Transpiration [Studies on the gas exchange of the vine I. Influences of temperature, leaf age and time of day on net photosynthesis and transpiration.]. Vitis. 21:93–100.
  • Altieri MA, Nicholls CI. 2002. The simplification of traditional vineyard based agroforests in northwestern Portugal: some ecological implications. Agroforestry Systems. 56:185–191.
  • Bainard LD, Klironomos JN, Gordon AM. 2011. Arbuscular mycorrhizal fungi in tree-based intercropping systems: A review of their abundance and diversity. Pedobiologia. 54:57–61.
  • Bayala J, Wallace JS. 1996. The water balance of mixed tree-crop systems. In: Ong CK, Huxley P, eds. Tree-crop interactions: A physical approach. Wallingford (UK): CAB International; p. 189–233.
  • Bell SJ, Henschke PA. 2005. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res. 11:242–295.
  • Caldwell MM, Dawson TE, Richards JH. 1998. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia. 113:151–161.
  • Cannell MGR, Van Noordwijk M, Ong CK. 1996. The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agrofor Syst. 34:27–31.
  • Chapman DM, Roby G, Ebeler SE, Guinard JX, Matthews MA. 2005. Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aust J Grape Wine Res. 11:339–347.
  • Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM. 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot. 205:661–676.
  • Chen D, Wang S, Xiong B, Cao B, Deng X. 2015. Carbon/nitrogen imbalance associated with drought-induced leaf senescence in sorghum bicolor. PloS One. 10(8):e0137026.
  • Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H. 2007. Biochemical changes throughout grape berry development and fruit and wine quality. Food. 1:1–22.
  • Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM. 2006. New Guidelines for δ13 C Measurements. Anal Chem. 78:2439–2441.
  • Davis JE, Norman JM. 1988. Effects of shelter on plant water use. Agric Ecosyst Environ. 22/23:393–405.
  • Deloire A, Carbonneau A, Wang Z, Ojeda H. 2004. Vine and water: a short review. J Int Sci Vigne Vin. 38:1–13.
  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Jm M, Cushman JC, Cramer GR. 2009. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of cabernet sauvignon and chardonnay. BMC Genomics. 10. doi:10.1186/1471-2164-10-212
  • Dickson RE. 1989. Carbon and nitrogen allocation in trees. Ann Sci For. 46:631–647.
  • Dos Santosdos TP, Cm L, Ml R, De Souza CR, Ricardo-da-Silva JM, Maroco JP, Pereira JS, Chaves M. 2007. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Sci Hortic. 112:321–330.
  • Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, et al. 2006. Silvoarable systems in Europe – past, present and future prospects. Agrofor Syst. 67:29–50.
  • Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 40:503–537.
  • Francis IL, Newton JL. 2005. Determining wine aroma from compositional data. Aust J Grape Wine Res. 11:114–126.
  • Gaudillere JP. 2002. Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J Exp Bot. 53:757–763.
  • Gessler A, Kreuzwieser J, Dopatka T, Rennenberg H. 2002. Diurnal courses of ammonium net uptake by the roots of adult beech (Fagus sylvatica) and spruce (Picea abies) trees. Plant Soil. 240:23–32.
  • Gessler A, Schneider S, Von Sengbusch S, Weber P, Huber S, Rothe A, Rennenberg H. 1998. Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spurce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol. 138:275–285.
  • González-Barreiro C, Rial-Otero R, Cancho-Grande B, Simal-Gándara J. 2015. Wine aroma compounds in grapes: a critical review. Crit Rev Food Sci Nut. 55:202–218.
  • Habran A, Commisso M, Helwi P, Hilbert G, Negri S, Ollat N, Gomès E, Van Leeuwen C, Guzzo F, Delrot S. 2016. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front Plant Sci. doi:10.3389/fpls.2016.01134
  • Hanson EJ, Howell GS. 1995. Nitrogen accumulation and fertilizer use efficiency by grapevines in short-season growing areas. HortScience. 30:504–507.
  • Högberg P. 1997. Transley review no. 95 15N natural abundance in soil-plant systems. New Phytol. 137:179–201.
  • Hu B, Simon J, Kuster TM, Arend M, Siegwolf R, Rennenberg H. 2013. Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type. Plant Biol. 15:198–209.
  • Jackson RS. 2008. Wine science. Principles and applications. Third ed. Amsterdam (Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Sydney, Tokio): Elsevier Inc.
  • Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst. 76:1–10.
  • Jose S, Gillespie AR, Pallardy SG. 2004. Interspecific interactions in temperate agroforestry. Agrofor Syst. 61:237–255.
  • Keller K. 2005. Deficit irrigation and vine mineral nutrition. Am J Enol Vitic. 53:267–283.
  • Kliewer WM. 1966. Sugars and organic acids of vitis vinifera. Plant Physiol. 41:923–931.
  • Kreuzwieser J, Fürniss S, Rennenberg H. 2002. Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant Cell Environ. 25:1039–1049.
  • Liu HF, Wu BH, Fan PG, Li SH, Li LS. 2006. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J Sci Food Agric. 86:1526–1536.
  • Lovisolo C, Lavoie-Lamoureux A, Tramontini S, Ferrandino A. 2016. Grapevine adaptations to water stress: new perspectives about soil/plant interactions. Theor Exp Plant Physiol. 28:53–66.
  • Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A. 2010. Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Funct Plant Biol. 37:98–116.
  • Lundgren BO, Raintree JB. 1983. . Sustained agroforestry. Agricultural Research for Development: Potentials and Challenges in Asia. ISNAR, The Haugue, ICRAF Reprint 3:1–26.
  • Mast MN, Hernandez R, French WT, Claupein W, Graeff-Hönninger S. 2015. Characterization of different biomasses based on their sugar profile with focus on their utilization for microbial biodiesel production. Int J Green Energy. 2015(12):930–938.
  • Mendes-Ferreira A, Barbosa C, Lage P, Mendes-Faia A. 2011. The impact of nitrogen on yeast fermentation and wine quality. CIENC TEC VITIVINIC. 26:17–32.
  • Millard P, Grelet GA. 2010. Nitrogen storage and remobilization by trees. Tree Physiol. 30:1083–1095.
  • Näsholm T, Kielland K, Ganetey U. 2009. Uptake of organic nitrogen by plants. New Phytol. 182:31–48.
  • Nerlich K, Graeff-Hönninger S, Clauphein W. 2013. Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices with emphasis an experience in Germany. Agrofor Syst. 87:475–492.
  • Pallardy SP. 2008. Physiology of Woody Plants. Third ed. Amsterdam (Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Sydney): Tokio. Elsevier Inc.
  • Pardo LH, Hemon HF, Monzoya JP, Fahey TJ, Siccama FG. 2002. Response of the natural abundance of 15N in forest soil and foliage to high nitrate loss following clear-cutting. Can J For Res. 32:1126–1136.
  • Qi H, Coplen TB, Geilmann H, Brand WA, Böhlke JK. 2003. Two new organic reference materials for δ13 C and δ15 N measurements and a new value for the δ13 C of NBS 22 oil. Rapid Commun Mass Spectrom. 17:2483–2487.
  • Rennenberg H, Dannenmann M. 2015. Nitrogen nutrition of trees in temperate forests—the significance of nitrogen availability in the pedosphere and atmosphere. Forests. 6:2820–2835.
  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D. 2006. Handbook of enology: the chemistry of wine stabilization and treatments, volume 2. 2nd ed. West Sussex (England): John Wiley & Sons Ltd.
  • Ringnér M. 2008. What is principal component analysis? Nat Biotechnol. 26:303–304.
  • Robinson D. 2001. δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol. 16:153–162.
  • Robinson D, Handley LL, Scrimgeour CM, Gordon DC, Forster BP, Ellis RP. 2000. Using stable isotope natural abundances (δ15N and δ13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes. J Exp Bot. 51:41–50.
  • Schmidt HL, Robins RJ, Werner RA. 2015. REVIEW ARTICLE Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. Isotopes Environ Health Stud. 51:155–195.
  • Schmitt A. 1983. Aktuelle weinanalytik. ein leitfaden für die Praxis. [Current wine analysis. A practical guideline]. 2nd ed. Germany: Schwäbisch Hall. Heller Chemie- und Verwaltungsgesellschaft mbH.
  • Scholander PF, Bradstree ED, Hemmingsen EA, Hammel HT. 1965. Sap pressure in vascular plants. Science. 148:339–346.
  • Schultz HR. 2003. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. Cultivars during Drought. Plant Cell Environ. 26:1393–1405.
  • Simon J, Dannenmann M, Gasche R, Holst J, Mayer H, Papen H, Rennenberg H. 2011. Competition for nitrogen between adult European beech and its offspring is reduced by avoidance strategy. For Ecol Manage. 262:105–114.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152–178.
  • Van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillère JP. 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J Int Sci Vigne Vin. 43:121–134.
  • Vin Anchor. 2000. S. cerevisiae; Anchor, Johannesburg, South Africa.
  • Waterhouse AL, Sacks GL, Jeffery DW. 2016. Understanding wine chemistry. The Atrium (Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom): John Wiley & Sons, Ltd,John Wiley & Sons, Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.