99
Views
2
CrossRef citations to date
0
Altmetric
Articles

Cultivation affected the level of inorganic phosphorus more than the organic pool of the Pampas soils in Argentina

ORCID Icon, , , &
Pages 1022-1033 | Received 19 Mar 2018, Accepted 17 Nov 2018, Published online: 13 Dec 2018

References

  • Adhami E, Owliaie HZ, Molavi R, Karimain N. 2014. Distribution of inorganic phosphorus fractions in some soil profiles of Zagros forest of Iran. Arch Agron Soil Sci. 60:251–263.
  • Ahlgren J, Djodjic F, Börjesson G, Mattsson L. 2013. Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use Manag. 29:24–35.
  • Alt F, Oelmann Y, Herold N, Schrumpf M, Wilcke W. 2011. Phosphorus partitioning in grassland and forest soils of Germany as related to land-use type, management intensity, and land-use related pH. J Plant Nutr Soil Sci. 174:195–209.
  • Alvarez R, Steinbach HS, Alvarez CR, De Paepe JL. 2015. Fertilizer use in Pampean agroecosystems: impact on productivity and nutrient balance. In: Sinha S, Pant KK, Bajrai S, Govil JN, editors. Chemical Engineering Series (ISBN 1-62699-041-7), Fertilizer Technology Vol. 2: biofertilizers (ISBN 1-62699-047-9). USA: Studdium Press LLC; Cap. 15. p. 352–368.
  • Alvarez R, Gimenez A, Caffaro M, Pagnanini F, Recondo V, Molina C, Berhongaray G, Mendoza M, Ramil D, Facio F, et al. 2018. Land use affected nutrient mass with minor impact on stoichiometry ratios in Pampean soils. Nutr Cycl Agroecosys. 110:257–276.
  • Alvarez R, Grigera S. 2005. Analysis of soil fertility and fertilizer effects on wheat and corn yield in the Rolling Pampa of Argentina. J Agron Crop Sci. 191:321–329.
  • Alvarez R, Lavado R. 1998. Climatic control of the organic matter of the Pampas and Chaco soils. Geoderma. 83:127–141.
  • Alvarez R, Steinbach HS. 2017. Modeling soil test phosphorus changes under fertilized and unfertilized managements using artificial neural networks. Agron J. 109:2278–2290.
  • Alvarez R, Steinbach HS, De Paepe JL. 2016. Historical balance of nitrogen, phosphorus, and sulfur of the Argentine Pampas. Ciencia del Suelo. 34:231–244.
  • Amato M. 1983. Determination of 12C and 14C in plnat and soil. Soil Biol Biochem. 15:611–612.
  • Appelhans SC, Melchiori RJ, Barbagelata PA, Novelli LE. 2016. Assessing organic phosphorus contributions for predicting soybean response to fertilization. Soil Sci Soc Am J. 80:1688–1697.
  • Berhongaray G, Alvarez R, De Paepe JL, Caride C, Cantet R. 2013. Land use effects on soil carbon in the Argentine Pampas. Geoderma. 192:97–110.
  • Bernoux M, Arrouays D, Cerri CC, Bourennane H. 1998. Modeling vertical distribution of carbon in Oxisols of the western Brazilian Amazon (Rondonia). Soil Sci. 163:941–951.
  • Birkeland PW. 1992. Quaternary soil chronosequences in various environments – extremely arid to humid tropical. Weathering, soils and paleosols. In: Martini IP, Chesworth W, editors. Development in earth surface processes 2. Amsterdam: Elsevier; p. 607.
  • Bouwman L, Goldewijk KK, Van der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Tehfest E. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Pnas. 110:20882–20887.
  • Bui EN, Henderson BL. 2013. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil. 373:553–568.
  • Buschiazzo DE, Hevia GG, Urioste AM, Hepper EN. 2000. Cultivation effects on phosphate forms and sorption in loess-soils of Argentina. Soil Sci. 165:427–436.
  • Chen CR, Hou EQ, Condron LM, Bacon G, Esfandbod M, Olley J, Turner BL. 2015. Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosecuence, southern Queensland, Australia. Geoderma. 257–258:4–13.
  • Chen M, Ma LQ. 2001. Taxonomic and geographic distribution of total phosphorus in Florida surface soils. Soil Sci Soc Am J. 65:1539–1547.
  • Ciampiti IA, Picone LI, Rubio G, García FO. 2011. Pathways of phosphorus fraction dynamics in field crop rotations of the Pampas of Argentina. Soil Sci Soc Am J. 75:918–926.
  • Crews TE, Brookes PC. 2014. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems. Agric Ecosys Environm. 184:168–181.
  • Cross AF, Schlesinger WH. 1995. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma. 64:197–214.
  • Delmas M, Saby N, Arrouays D, Dupas R, Lemercier B, Pellerin S. 2015. Explaining and mapping total phosphorus contents in French soils. Soil Use Manage. 31:259–269.
  • Galantini JA, Rossell RA. 1997. Organic fractions, N, P and S changes in an Argentine semiarid Haplustoll under different crop sequences. Soil Till Res. 42:221–228.
  • Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol. 8:345–360.
  • Hall AJ, Rebella C, Guersa C, Culot J. 1992. Field-crop system of the Pampas. In: Pearson CJ, editor. Field crop ecosystems. Amsterdam: Elsevier; p. 413–450.
  • Hou E, Chen C, Wen D, Liu X. 2014. Relationships of phosphorus fractions to organic carbon content in surface soils in mature subtropical forest, Dinghushan, China. Soil Res. 52:55–63.
  • INDEC. 2002. Censo nacional de población, hogares y viviendas. [accessed 1912 Dec 10]. http://www.indec.gov.ar/agropecuario/cna.asp.
  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia. 108:389–411.
  • Johnston AE, Poulton PR, Fixen PE, Curtin D. 2014. Phosphorus: its efficient use in agriculture. Adv Agron. 123:177–288.
  • Kirby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G. 2011. Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma. 163:197–208.
  • Kuo S. 1996. Chapter 32. Phosphorus. In: Sparks DL, editors. Methods of Soil Analysis. Soil Sci. Soc. Am. Book Series 5; Part. 3-Chemical Methods. Madison (WI): Soil Science Society of America; p. 869–919.
  • Ma J, He P, Xu X, He W, Liu Y, Yang F, Chen F, Li S, Tu S, Jin J, et al. 2016. Temporal and spatial changes in soil available phosphorus in China. Field Crops Res. 192:13–20.
  • Mackenzie FT, Ver LM, Lerman A. 2002. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem Geol. 190:13–32.
  • McDowell RW, Stewart I. 2006. The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and 31P NMR. Geoderma. 130:176–189.
  • McGill WB, Cole CV. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma. 26:267–286.
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27:31–36.
  • Negassa W, Leinweber P. 2009. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J Plant Nutr Soil Sci. 172:305–325.
  • O´Halloran IP, Kachanoski RG, Stewart WB. 1985. Spatial variability of soil phosphorus as influenced by soil texture and management. Can J Soil Sci. 65:475–487.
  • OECD 2008. Environmental performance of agriculture in OECD countries since 1990. p. 208. www.oecd.org/publishing/corrigenda.
  • Paruelo JM, Piñeiro G, Baldi G, Baeza S, Lezama F, Altesor A, Oesterheld M. 2010. Carbon stocks and fluxes in rangelands of the Río de la Plata basin. Rangeland Ecol Manage. 63:94–108.
  • Pätzold S, Hejcman M, Barej J, Schellberg J. 2013. Soil phosphorus fractions alter seven decades of fertilizer application in Rengen Grassland Experiment. J Plant Nutr Soil Sci. 176:910–920.
  • Pierzynski GM, McDowell RW, Sims JT. 2005. Chemistry, cycling and potential movement of inorganic phosphorus in soils. In: Sims JT, Sharpley AN, editors. “Phosphorus: agriculture and the environment”. Agron. Mon. Nº 46. Madison (USA): American Society of Agronomy; p. 53–86.
  • Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael BAS, Schumacher J, Gensior A. 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Change Biol. 17:2415–2427.
  • Rennesson M, Dufey J, Legrain X, Genot V, Bock L, Colinet G. 2013. Relationships between the P status of surface and deep horizons of agricultural soils under various cropping systems and for different soil types: a case study in Belgium. Soil Use Manag. 29:103–113.
  • Sain GE, Jauregui MA. 1993. Deriving fertilizer recommendations with a flexible functional form. Agron J. 85:934–937.
  • Satorre E, Slafer G. 1999. Wheat production systems of the Pampas. In: Satorre E, Slafer G, editors. Wheat. Ecology and physiology of yield determination. NY (USA): Food Products Press; p. 333–348.
  • Sharpley AN, Smith SJ. 1983. Distribution of phosphorus forms in virgin and cultivated soils and potential erosion losses. Soil Sci Soc Am J. 47:581–586.
  • Siebers N, Sumann M, Kaiser K, Amelung W. 2017. Climatic effects on phosphorus fractions of native and cultivated North American Grassland soils. Soil Sci Soc Am J. 81:299–309.
  • Soriano A. 1991. Río de la Plata Grasslands. In: Coupland RT, editor. Ecosystems of the world. 8A. Natural Grassland. Amsterdam: Elsevier; p. 367–407.
  • Teruggi ME. 1957. The nature and origin of argentine loess. J Sed Petrol. 27:322–332.
  • Tipping E, Somerville CJ, Luster J. 2016. The C:N:P:S stoichiometry of soil organic matter. Biogeochemistry. 130:117–131.
  • Tóth G, Guicharnaud RA, Tóth B, Hermann T. 2014. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur J Agron. 55:42–52.
  • Turner BL, Laliberté E. 2015. Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean scrubland in southwestern Australia. Ecosystems (NY, Print). 18:287–309.
  • Turner BL, Lambers H, Condron LM, Cramer MD, Leake JR, Richardson AE, Smith SE. 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil. 367:225–234.
  • Updegraff K, Pastor J, Bridgham S, Johston CA. 1995. Environmental and substrate control over carbon and nitrogen mineralization in northern wetlands. Ecol Appl. 6:151–153.
  • Van Bochove E, Thëriault G, Deneault JT, Dechmi F, Allaire SE, Rousseau AN. 2012. Risk of phosphorus desorption from Canndian agriculture land: 25-year temporal trend. J Evironm Qual. 41:1402–1412.
  • Viglizzo EF, Létora F, Pordomingo AJ, Bernardos JN, Roberto ZE, Del Valle H. 2001. Ecological lessons and applications from one century of low external-input farming in the Pampas of Argentina. Agric Ecosys Environ. 83:64–81.
  • Wang YP, Law RM, Pak B. 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences. 7:2261–2282.
  • Withers PJA, Nash DM, Laboski CAM., et al. 2005. Environmental management of phosphorus fertilizers. In: Sims JT, Sharpley AN, editors. Phosphorus: agriculture and the environment. Madison (WI): American Society of Agronomy, Agronomy monograph nº 46; p. 781–827.
  • Yan Z, Liu P, Li Y, Ma L, Alva A, Dou Z, Chen Q, Zhang F. 2013. Phosphorus in China´s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications. J. Environm. Qual. 42:982–989.
  • Zubillaga MS, Giuffre L. 1998. Pathways of native and fertilizer phosphorus in Argentine soils. Nutr Cycl Agroecosys. 51:101–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.