400
Views
8
CrossRef citations to date
0
Altmetric
Articles

Linkage between soil organic carbon and the utilization of soil microbial carbon under plastic film mulching in a semi-arid agroecosystem in China

, , , , , , & show all
Pages 1788-1801 | Received 31 Jul 2018, Accepted 31 Jan 2019, Published online: 13 Feb 2019

References

  • Anikwe MAN, Mbah CN, Ezeaku PI, Onyia VN. 2007. Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam (Colocasia esculenta) on an ultisol in southeastern Nigeria. Soil Till Res. 93:264–272. doi:10.1016/j.still.2006.04.007.
  • Balser TC, Firestone MK. 2005. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415. doi:10.1007/s10533-004-0372-y.
  • Belaytedla A, Zhou XH, Su B, Wan SQ, Luo Y. 2009. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US great plains subjected to experimental warming and clipping. Soil Biol Biochem. 41:110–116. doi:10.1016/j.soilbio.2008.10.003.
  • Bending GD, Turner MK, Rayns F, Marx MC, Wood M. 2004. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem. 36:1785–1792. doi:10.1016/j.soilbio.2004.04.035.
  • Bengtson P, Bengtsson G. 2007. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecol Lett. 10:783–790. doi:10.1111/j.1461-0248.2007.01072.x.
  • Berger S, Kim Y, Kettering J, Gebauer G. 2013. Plastic mulching in agriculture—friend or foe of N₂O emissions? Agr Ecosyst Environ. 167:43–51. doi:10.1016/j.agee.2013.01.010.
  • Bu LD, Liu JL, Zhu L, Luo SS, Chen XP, Li SQ. 2014. Attainable yield achieved for plastic film-mulched maize in response to nitrogen deficit. Eur J Agron. 55:53–62. doi:10.1016/j.eja.2014.01.002.
  • Burns RG, Deforest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem. 58:216–234. doi:10.1016/j.soilbio.2012.11.009.
  • Cambardella CA, Elliott ET. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J. 56:777–783. doi:10.2136/sssaj1992.03615995005600030017x.
  • Chen HQ, Hou RX, Gong YS, Li HW, Fan MS, Kuzyakov Y. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Till Res. 106:85–94. doi:10.1016/j.still.2009.09.009.
  • Chen YP, Wang KB, Lin YS, Shi WY, Song Y, He XH. 2015. Balancing green and grain trade. Nat Geosci. 8:739–741. doi:10.1038/ngeo2544.
  • Chen ZM, Wang HY, Liu XW, Zhao XL, Lu DJ, Zhou JM, Li CZ. 2017. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil Till Res. 165:121–127. doi:10.1016/j.still.2016.07.018.
  • Choi KH, Dobbs FC. 1999. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods 36:203–213.
  • Churchland C, Grayston SJ, Bengtson P. 2013. Spatial variability of soil fungal and bacterial abundance: consequences for carbon turnover along a transition from a forested to clear-cut site. Soil Biol Biochem. 63:5–13. doi:10.1016/j.soilbio.2013.03.015.
  • Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT. 2005. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol Biochem. 37:1726–1737. doi:10.1016/j.soilbio.2005.02.007.
  • Cusack DF, Firestone MK. 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621–632.
  • Dong WY, Si PF, Liu EK, Yan CR, Zhang Z, Zhang YQ. 2017. Influence of film mulching on soil microbial community in a rainfed region of northeastern China. Sci Rep. 7:8468. doi:10.1038/s41598-017-08575-w.
  • Dong WY, Zhang XY, Dai XQ, Fu XL, Yang FT, Liu XY, Sun XM, Wen XF, Schaeffer S. 2014. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Appl Soil Ecol. 84:140–147. doi:10.1016/j.apsoil.2014.06.007.
  • Doran JW, Zeiss MR. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol. 15:3–11. doi:10.1016/S0929-1393(00)00067-6.
  • Feller C, Beare MH. 1997. Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116. doi:10.1016/S0016-7061(97)00039-6.
  • Garland JL, Mills AL. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol. 57:2351–2359.
  • Huang Z, Xu Z, Chen C, Boyd S. 2008. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia. Forest Ecol Manage. 254:46–55. doi:10.1016/j.foreco.2007.07.021.
  • Insam H, Mitchell CC, Dormaar JF. 1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol Biochem. 23:459–464. doi:10.1016/0038-0717(91)90010-H.
  • Jankowski K, Schindler DE, Horner-Devine MC. 2014. Resource availability and spatial heterogeneity control bacterial community response to nutrient enrichment in lakes. PLoS One. 9:e86991. doi:10.1371/journal.pone.0086991.
  • Jenkinson DS, Ladd JN. 1981. Microbial biomass in soil: measurement and turnover. Soil Biol Biochem. 5:415–471.
  • Joergensen RG, Brookes PC, Jenkinson DS. 1990. Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem. 22:1129–1136. doi:10.1016/0038-0717(90)90039-3.
  • Joergensen RG, Mueller T, Wolters V. 1996. Total carbohydrates of the soil microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol Biochem. 28:1147–1153. doi:10.1016/0038-0717(96)00111-3.
  • Johnson JMF, Allmaras RR, Reicosky DC. 2006. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J. 98:622–636. doi:10.2134/agronj2005.0179.
  • Jones DL, Willett VB. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem. 38:991–999. doi:10.1016/j.soilbio.2005.08.012.
  • Kowalchuk GA, Buma DS, De BW, Klinkhamer PGL, Veen JAV. 2002. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek. 81:509. doi:10.1023/A:1020565523615.
  • Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi:10.1126/science.1097396.
  • Leps J, Šmilauer P. 2003. Multivariate analysis of ecological data using CANOCO. New York (NY): Cambridge University Press.
  • Li CJ, Wang CJ, Wen XX, Qin XL, Liu Y, Han J, Li YJ, Liao YC, Wu W. 2017. Ridge–furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat–maize double–cropping system in dry semi–humid areas. Field Crop Res. 203:201–211. doi:10.1016/j.fcr.2016.12.029.
  • Liu CA, Zhou LM. 2017. Soil organic carbon sequestration and fertility response to newly-built terraces with organic manure and mineral fertilizer in a semi-arid environment. Soil Till Res. 172:39–47. doi:10.1016/j.still.2017.05.003.
  • Liu CA, Zhou LM, Jia JJ, Wang LJ, Si JT, Li X, Pan CC, Siddique KHM, Li FM. 2014a. Maize yield and water balance is affected by nitrogen application in a film-mulching ridge–furrow system in a semiarid region of China. Eur J Agron. 52:103–111. doi:10.1016/j.eja.2013.10.001.
  • Liu X, Li XG, Hai L, Wang YP, Fu TT, Turner NC. 2014. Film-mulched ridge–furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. Soil Sci Soc Am J. 78:1434–1441. doi:10.2136/sssaj2014.04.0121.
  • Loveland P, Webb J. 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Till Res. 70:1–18. doi:10.1016/S0167-1987(02)00139-3.
  • Moore JM, Klose S, Tabatabai MA. 2000. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol Fert Soils. 31:200–210. doi:10.1007/s003740050646.
  • Pawvan H, Jones DL, Jentschke G, Godbold DL. 2005. Organic acid concentrations in soil solution: effects of young coniferous trees and ectomycorrhizal fungi. Soil Biol Biochem. 37:771–776. doi:10.1016/j.soilbio.2004.10.009.
  • Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C. 2014. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Till Res. 139:19–22. doi:10.1016/j.still.2014.01.006.
  • Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386. doi:10.1890/06-0219.
  • Shen Y, Chen Y, Li S. 2016. Microbial functional diversity, biomass and activity as affected by soil surface mulching in a semiarid farmland. PLoS One 11:e159144. doi:10.1371/journal.pone.0159144.
  • Spedding TA, Hamel C, Mehuys GR, Madramootoo CA. 2004. Soil microbial dynamic in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem. 36:499–512. doi:10.1016/j.soilbio.2003.10.026.
  • Staddon WJ, Duchesne LC, Trevors JT. 1997. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns. Microb Ecol. 34:125–130.
  • Ter-Braak CJF, Smilauer P. 2002. Canoco reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (Version 4.5). Ithaca (New York): Microcomputer Power.
  • Tian J, Mccormack L, Wang JY, Guo DL, Wang QF, Zhang XY, Yu GR, Biagodatskaya E, Kuzyakov Y. 2015. Linkages between the soil organic matter fractions and the microbial metabolic functional diversity within a broad-leaved Korean pine forest. Eur J Soil Biol. 66:57–64. doi:10.1016/0038-0717(87)90052-6.
  • Trumbore SE, Chadwick OA, Amundson R. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396. doi:10.1126/science.272.5260.393.
  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 19:703–707. doi:10.1016/0038-0717(87)90052-6.
  • Wallenstein MD, Weintraub MN. 2008. Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem. 40:2098–2106. doi:10.1016/j.soilbio.2008.01.024.
  • Wang J, Lv SH, Zhang MY, Chen GC, Zhu TB, Zhang S, Teng Y, Christle P, Ym L. 2016a. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151:171–177. doi:10.1016/j.chemosphere.2016.02.076.
  • Wang YP, Li XG, Fu TT, Wang L, Turner NC, Siddique KH, Li FM. 2016c. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agr Forest Meteorol. 228:42–51. doi:10.1016/j.agrformet.2016.06.016.
  • Wang YP, Li XG, Zhu J, Fan CY, Kong XJ, Turner NC, Siddique KHM. 2016b. Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agr Forest Meteorol. 220:160–169. doi:10.1016/j.agrformet.2016.01.142.
  • Yang QD, Zuo HC, Xiao X, Wang SJ, Chen BL, Chen JW. 2012. Modelling the effects of plastic mulch on water, heat and CO2 fluxes over cropland in an arid region. J Hydrol. 452-453:102–118. doi:10.1016/j.jhydrol.2012.05.041.
  • Yang YH, Yao J, Hu S, Qi Y. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb Ecol. 39:72–79.
  • Yu PJ, Liu SW, Han KX, Guan SC, Zhou DW. 2017. Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agr Ecosyst Environ. 245:83–91. doi:10.1016/j.agee.2017.05.013.
  • Zak JC, Willig MR, Moorhead DL, Wildman HG. 1994. Functional diversity of microbial communities: A quantitative approach. Soil Biol Biochem. 26:1101–1108. doi:10.1016/0038-0717(94)90131-7.
  • Zhang F, Li M, Qi JH, Li FM, Sun GJ. 2015. Plastic film mulching increases soil respiration in ridge-furrow maize management. Arid Soil Res Rehab. 29:432–453.
  • Zhang F, Li M, Zhang WJ, Li FJ, Qi JG. 2017. Ridge–furrow mulched with plastic film increases little in carbon dioxide efflux but much significant in biomass in a semiarid rainfed farming system. Agr Forest Meteorol. 244-245:33–41. doi:10.1016/j.agrformet.2017.05.010.
  • Zhang XY, Yang Y, Zhang C, Niu S, Yang H, Yu GR, Wang HM, Evgenia B, Yakov K, Tian DS, et al. 2018. Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils. Funct Ecol. 32:106–116. doi:10.1111/1365-2435.12936.
  • Zhang Z, Zhang YQ, Sun ZX, Zheng JM, Liu EK, Feng LS, Feng C, Si PF, Bai W, Cai Q, et al. 2019a. Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate. Agr Water Manage. 212:203–210. doi:10.1016/j.agwat.2018.09.001.
  • Zhou LM, Jin SL, Liu CA, Xiong YC, Si JT, Li XG, Gan YT, Li FM. 2012a. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: opportunities and challenges in a semiarid agroecosystem. Field Crop Res. 126:181–188. doi:10.1016/j.fcr.2011.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.