345
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Enhanced bioremediation of PAH-contaminated soil by wheat bran and microbial community response

, , , , , & show all
Pages 1089-1102 | Received 01 Dec 2018, Accepted 11 Aug 2019, Published online: 17 Aug 2019

References

  • Al-Jawasim M, Yu K, Park JW. 2015. Synergistic effect of crude oil plus dispersant on bacterial community in a Louisiana salt marsh sediment. FEMS Microbiol Lett. 362(17):fnv144. doi:10.1093/femsle/fnv144.
  • Arulazhagan P, Vasudevan N. 2009. Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull. 58(2):256–262. doi:10.1016/j.marpolbul.2008.09.017.
  • Axtell C, Johnston CG, Bumpus JA. 2000. Bioremediation of soil contaminated with explosives at the Naval weapons station Yorktown. Soil Sediment Contam. 9(6):537–548. doi:10.1080/10588330091134392.
  • Badejo AC, Choi CW, Badejo AO, Shin KH, Hyun JH, Lee YG, Kim S, Park KS, Kim SH, Jung KH, et al. 2013. A global proteome study of Mycobacterium gilvum PYR-GCK grown on pyrene and glucose reveals the activation of glyoxylate, shikimate and gluconeogenetic pathways through the central carbon metabolism highway. Biodegradation 24(6):741–752. doi:10.1007/s10532-013-9622-9
  • Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW. 2013. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. Isme J. 7(6):1200–1210. doi:10.1038/ismej.2013.1.
  • Bergmans MEF, Beldman G, Gruppen H, Voragen AGJ. 1996. Optimisation of the selective extraction of (glucurono)arabinoxylans from wheat bran: use of barium and calcium hydroxide solution at elevated temperatures. J Cereal Sci. 23(3):235–245. doi:10.1006/jcrs.1996.0024.
  • Castro-Silva C, Ruiz-Valdiviezo VM, Valenzuela-Encinas C, Alcantara-Hernandez RJ, Navarro-Noya YE, Vazquez-Nunez E, Luna-Guido M, Marsch R, Dendooven L. 2013. The bacterial community structure in an alkaline saline soil spiked with anthracene. Electron J Biotechnol. 16(5):10.
  • Cerniglia CE. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3(2–3):351–368. doi:10.1007/BF00129093.
  • Cerniglia CE, Sutherland JB. 2010. Degradation of polycyclic aromatic hydrocarbons by fungi. degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin (Heidelberg): Springer Berlin Heidelberg; p. 2079–2110.
  • Chakravarti D, Venugopal D, Mailander PC, Meza JL, Higginbotham S, Cavalieri EL, Rogan EG. 2008. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin. Mutat Res-Gen Tox En. 649(1):161–178. doi:10.1016/j.mrgentox.2007.08.007.
  • Cottin NC, Merlin G. 2007. Study of pyrene biodegradation capacity in two types of solid media. Sci Total Environ. 380(1–3):116–123. doi:10.1016/j.scitotenv.2007.03.016.
  • Da Cunha CD, Rosado AS, Sebastian GV, Seldin L, von der Weid I. 2006. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl Microbiol Biot. 73(4):949–959. doi:10.1007/s00253-006-0531-2.
  • De Boer J, Wagelmans M. 2016. Polycyclic aromatic hydrocarbons in soil - practical options for remediation. Clean - Soil Air Water 44(6):648–653. doi:10.1002/clen.v44.6.
  • Delgado-Saborit JM, Stark C, Harrison RM. 2011. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ Int. 37(2):383–392. doi:10.1016/j.envint.2010.10.011.
  • Drury B, Rosi-Marshall E, Kelly JJ. 2013. Wastewater treatment efflu-ent reduces the abundance and diversity of benthic bacterial communitiesin urban and suburban rivers. Appl Environ Microb. 79(7):1897–1905. doi:10.1128/AEM.03527-12.
  • Duan L, Naidu R, Thavamani P, Meaklim J, Megharaj M. 2015. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach. Environ Sci Pollut R. 22(12):8927–8941. doi:10.1007/s11356-013-2270-0.
  • Fernandez-Luqueno F, Valenzuela-Encinas C, Marsch R, Martinez-Suarez C, Vazquez-Nunez E, Dendooven L. 2011. Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: a review. Environ Sci Pollut R. 18(1):12–30. doi:10.1007/s11356-010-0371-6.
  • Ghaly AE, Yusran A, Dave D. 2013. Effects of biostimulation and bioaugmentation on the degradation of pyrene in soil. J Bioremed Biodeg, S7:005.
  • Guo YZ. 2012. The Multi-gene phylogeny and classification of Chaetomiaceae. Shan Xi, China: Northwest A&F University.
  • Gutierrez T, Green DH, Nichols PD, Whitman WB, Semple KT, Aitken MD. 2013. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl Environ Microbiol. 79(1):205–214. doi:10.1128/AEM.02833-12.
  • Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 169(1–3):1–15. doi:10.1016/j.jhazmat.2009.03.137.
  • Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE. 2015. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598. doi:10.1016/j.chemosphere.2015.07.025.
  • Hughes KA, Bridge P, Clark MS. 2007. Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ. 372(2–3):539–548. doi:10.1016/j.scitotenv.2006.09.016.
  • Johnsen AR, Wick LY, Harms H. 2005. Principles of microbial PAH-degradation in soil. Environ Pollut. 133(1):71–84. doi:10.1016/j.envpol.2004.04.015.
  • Jonker MTO. 2008. Absorption of polycyclic aromatic hydrocarbons to cellulose. Chemosphere 70(5):778–782. doi:10.1016/j.chemosphere.2007.07.020.
  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M. 2017. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci. 51:52–74. doi:10.1016/j.jes.2016.08.023.
  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW. 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technol. 91(2):153–156. doi:10.1016/S0960-8524(03)00172-X.
  • Kong FX, Sun GD, Liu ZP. 2018. Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism. Chemosphere 198:83–91. doi:10.1016/j.chemosphere.2018.01.097.
  • Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. 2016. Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous. J Hazard Mater. 307:99–107. doi:10.1016/j.jhazmat.2015.12.068.
  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M. 2017. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 168:944–968. doi:10.1016/j.chemosphere.2016.10.115.
  • Li A, Qu Y, Zhou J, Gou M. 2009. Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4. J Environ Sci. 21(2):211–217. doi:10.1016/S1001-0742(08)62253-6.
  • Li J, Yuan GL, Li P, Sun Y, Yu HH, Wang GH. 2017. The emerging source of polycyclic aromatic hydrocarbons from mining in the Tibetan Plateau: distributions and contributions in background soils. Sci Total Environ. 584–585:64–71. doi:10.1016/j.scitotenv.2017.01.146.
  • Liu H, Park JW, Haeggblom MM. 2014. Enriching for microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Pollut. 184:222–230. doi:10.1016/j.envpol.2013.08.019.
  • Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant Soil 389(1–2):109–119. doi:10.1007/s11104-014-2345-9.
  • Liu W, Sun J, Ding L, Luo Y, Chen M, Tang C. 2013. Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.). Plant Soil 371(1–2):533–542. doi:10.1007/s11104-013-1717-x.
  • Llado S, Covino S, Solanas AM, Petruccioli M, D’Annibale A, Vinas M. 2015. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. J Hazard Mater. 283:35–43. doi:10.1016/j.jhazmat.2014.08.065.
  • Llado S, Covino S, Solanas AM, Viñas M, Petruccioli M, D’Annibale A. 2013. Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. J Hazard Mater. 248–249(6):407–414. doi:10.1016/j.jhazmat.2013.01.020.
  • Lu RK. 1999. Soil and agro-chemistry analytical methods. Beijing, China: China Agricultural Science and Technology Press.
  • Machin-Ramirez C, Morales D, Martinez-Morales F, Okoh AI, Trejo-Hernandez MR. 2010. Benzo[a]pyrene removal by axenic- and co-cultures of some bacterial and fungal strains. Int Biodeter Biodegr. 64(7):538–544. doi:10.1016/j.ibiod.2010.05.006.
  • Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M. 2017. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeter Biodegr. 116:48–57. doi:10.1016/j.ibiod.2016.09.030.
  • Marco-Urrea E, Garcia-Romera I, Aranda E. 2015. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol. 32(6):620–628. doi:10.1016/j.nbt.2015.01.005.
  • Martel F, Estrine B, Plantier-Royon R, Hoffmann N, Portella C. 2010. Development of agriculture left-overs: fine organic chemicals from wheat hemicellulose-derived pentoses. Topics Curr Chem. 294:79–115.
  • Martin F, Torelli S, Le Paslier D, Barbance A, Martin-Laurent F, Bru D, Geremia R, Blake G, Jouanneau Y. 2012. Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environ Pollut. 162:345–353. doi:10.1016/j.envpol.2011.11.032.
  • Matsumoto H, Koganei K, Nishida N, Koyama Y, Saito S, Kataoka H, Ogihara J, Kasumi T. 2014. Cell dispersion culture for the effective growth of Humicola insolens and efficient enzyme production. J Biosci Bioeng. 117(3):257–262. doi:10.1016/j.jbiosc.2013.08.014.
  • Memić M, Vrtačnik M, Boh B, Pohleven F, Mahmutović O. 2017. Biodegradation of PAHs by ligninolytic fungi Hypoxylon fragiforme and Coniophora puteana. Polycycl Aromat Comp. 1:1–8. doi:10.1080/10406638.2017.1392326.
  • Ming Z, Li HX, Sang SL, Yong SO. 2016. Sorption of polycyclic aromatic hydrocarbons (PAHs) by dietary fiber extracted from wheat bran. Chem Spec Bioavailab. 28(1–4):13–17. doi:10.1080/09542299.2015.1136569.
  • Moghaddam HA, Abu Bakar NK. 2016. Carbon dynamic in sandy soil artificially contaminated with petroleum in the presence of various forms of inorganic nitrogen for bioremediation. Environ Earth Sci. 75(3):1–13.
  • Mohammed MOA, Song WW, Ma YL, Liu LY, Ma WL, Li WL, Li YF, Wang FY, Qi MY, Lv N. 2016. Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone. Chemosphere. 155:70–85. doi:10.1016/j.chemosphere.2016.04.023.
  • Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y. 2006. Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Bio. 5(4):347–374. doi:10.1007/s11157-006-0004-1.
  • Muangchinda C, Pansri R, Wongwongsee W, Pinyakong O. 2013. Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand. J Appl Microbiol. 114(5):1311–1324. doi:10.1111/jam.12128.
  • Ni J, Luo Y, Wei R, Li X. 2008. Distribution patterns of polycyclic aromatic hydrocarbons among different organic carbon fractions of polluted agricultural soils. Geoderma 146(1–2):277–282. doi:10.1016/j.geoderma.2008.06.001.
  • Niepceron M, Beguet J, Portet-Koltalo F, Martin-Laurent F, Quillet L, Bodilis J. 2014. Low impact of phenanthrene dissipation on the bacterial community in grassland soil. Environ Sci Pollut R. 21(4):2977–2987. doi:10.1007/s11356-013-2258-9.
  • Nzila A. 2018. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ Pollut. 239:788–802. doi:10.1016/j.envpol.2018.04.074.
  • Okere UV, Semple KT. 2011. Biodegradation of PAHs in ‘Pristine’ soils from different climatic regions. Lect Notes Comput Sci. s1(2):386–417.
  • Ping L, Zhang C, Zhang C, Zhu Y, He H, Wu M, Tang T, Li Z, Zhao H. 2014. Isolation and characterization of pyrene and benzo[a]pyrene-degrading Klebsiella pneumonia PL1 and its potential use in bioremediation. Appl Microbiol Biot. 98(8):3819–3828. doi:10.1007/s00253-013-5469-6.
  • Ren G, Ren W, Teng Y, Li Z. 2015. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil. Front Microbiol. 6:22. doi:10.3389/fmicb.2015.00022.
  • Riserroberts E 1998. Remediation of petroleum contaminated soils: biological, physical, and chemical processes.
  • Røberg S, Østerhus JI, Landfald B. 2011. Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol. 34(10):1455–1465. doi:10.1007/s00300-011-1003-4.
  • Röling WFM, Milner MG, Jones DM, Fratepietro F, Swannell RPJ, Daniel F, Head IM. 2004. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microb. 70(5):2603–2613. doi:10.1128/AEM.70.5.2603-2613.2004.
  • Romero MC, Urrutia MI, Reinoso HE, Kiernan MM. 2010. Benzo[a]pyrene degradation by soil filamentous fungi. J Yeast Fungal Res 1(2):025–029.
  • Rostami S, Azhdarpoor A, Rostami M, Samaei MR. 2016. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils. Chemosphere 161:219–223. doi:10.1016/j.chemosphere.2016.07.026.
  • Saito T, Hong P, Kato K, Okazaki M, Inagaki H, Maeda S, Yokogawa Y. 2003. Purification and characterization of an extracellular laccase of a fungus (family Chaetomiaceae) isolated from soil. Enzyme Microb Tech. 33(4):520–526. doi:10.1016/S0141-0229(03)00158-3.
  • Seo JS, Keum YS, Li QX. 2009. Bacterial degradation of aromatic compounds. Int J Env Res Pub He. 6(1):278–309. doi:10.3390/ijerph6010278.
  • Shen G, Tao S, Wei S, Chen Y, Zhang Y, Shen H, Huang Y, Zhu D, Yuan C, Wang H, et al. 2013a. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. Environ Sci Technol. 47(6):2998–3005a. doi:10.1021/es304599g
  • Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y. 2013b. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol. 47(12):6415–6424b. doi:10.1021/es400857z.
  • Simpanen S, Dahl M, Gerlach M, Mikkonen A, Malk V, Mikola J, Romantschuk M. 2016. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident. Environ Sci Pollut R. 23(24):25024–25038. doi:10.1007/s11356-016-7606-0.
  • Singh SN, Tripathi RD, Editors. 2007. Environmental bioremediation technologies. New York: Springer Science & Business Media.
  • Song M, Yang Y, Jiang L, Hong Q, Zhang D, Shen Z, Yin H, Luo C. 2017. Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium. Environ Pollut. 220:1059–1067. doi:10.1016/j.envpol.2016.11.037.
  • Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z. 2011. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull. 62(10):2122–2128. doi:10.1016/j.marpolbul.2011.07.013.
  • Tarafdar A, Sinha A. 2017. Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil. Environ Sci Pollut R. 24(11):10373–10380. doi:10.1007/s11356-017-8676-3.
  • Toledo FL, Calvo C, Rodelas B, Gonzalez-Lopez J. 2006. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol. 29(3):244–252. doi:10.1016/j.syapm.2005.09.003.
  • Tsutsumi Y, Haneda T, Nishida T. 2001. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42(3):271–276.
  • Uyttebroek M, Breugelmans P, Janssen M, Wattiau P, Joffe B, Karlson U, Ortega-Calvo JJ, Bastiaens L, Ryngaert A, Hausner M, et al. 2006. Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long-term PAH-contaminated soil. Environ Microbiol. 8(5):836–847. doi:10.1111/j.1462-2920.2005.00970.x
  • Wang S, Nomura N, Nakajima T, Uchiyama H. 2012. Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J Biosci Bioeng. 113(5):624–630. doi:10.1016/j.jbiosc.2012.01.005.
  • Wu Y, Ding Q, Zhu Q, Zeng J, Ji R, Dumont MG, Lin X. 2018. Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil. Soil Biol Biochem. 118:27–34. doi:10.1016/j.soilbio.2017.11.022.
  • Wu Y, Teng Y, Li Z, Liao X, Luo Y. 2008. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem. 40(3):789–796. doi:10.1016/j.soilbio.2007.10.013.
  • Yang Y, Zhang N, Xue M, Lu ST, Tao S. 2011. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials. Environ Pollut. 159(2):591–595. doi:10.1016/j.envpol.2010.10.003.
  • Yanto DHY, Hidayat A, Tachibana S. 2017. Periodical biostimulation with nutrient addition and bioaugmentation using mixed fungal cultures to maintain enzymatic oxidation during extended bioremediation of oily soil microcosms. Int Biodeter Biodegr. 116:112–123. doi:10.1016/j.ibiod.2016.10.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.