178
Views
5
CrossRef citations to date
0
Altmetric
Articles

A modified physical-based water-retention model for continuous soil moisture estimation during infiltration: experiments on saline and non-saline soils

, &
Pages 1344-1357 | Received 03 Mar 2019, Accepted 16 Sep 2019, Published online: 25 Sep 2019

References

  • Basha HA. 2011. Infiltration models for soil profiles bounded by a water table. Water Resour Res. 47:W10527. doi:10.1029/2011WR010872
  • Brooks RH, Corey AT. 1964. Hydraulic properties of porous media. hydraulic Papers. Fort Collins (CO): Colorado State University.
  • Brunetti G, Simunek J, Bautista E. 2018. A hybrid finite volume-finite element model for the numerical analysis of furrow irrigation and fertigation. Comput Electron Agr. 150:312–327. doi:10.1016/j.compag.2018.05.013
  • Cannavo P, Coulon A, Charpentier S, Bechet B, Vidal-Beaudet L. 2018. Water balance prediction in stormwater infiltration basins using 2-D modeling: an application to evaluate the clogging process. Int J Sediment Res. 33:371–384. doi:10.1016/j.ijsrc.2018.04.005
  • Cao DF, Shi B, Wei GQ, Chen SE, Zhu HH. 2018. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers. Measurement 123:175–184. doi:10.1016/j.measurement.2018.03.052
  • Castellini M, Iovino M. 2019. Pedotransfer functions for estimating soil water retention curve of Sicilian soils. Arch Agron Soil Sci. 65:1401–1416. doi:10.1080/03650340.2019.1566710
  • Chen JM, Tan YC, Chen CH. 2003. Analytical solutions of one-dimensional infiltration before and after ponding. Hydrol Process 17:815–822. doi:10.1002/hyp.1202
  • Chen JM, Tan YC, Chen CH, Parlange JY. 2001. Analytical solutions for linearized Richards equation with arbitrary time-dependent surface fluxes. Water Resour Res. 37:1091–1093. doi:10.1029/2000WR900406
  • Dickinson JE, Ferré TPA. 2018. Filtering of period infiltration in a layered vadose zone: 1. Approximation of damping and time lags. Vadose Zone J. 17:180047.
  • Flammini A, Corradini C, Morbidelli R, Saltalippi C, Picciafuoco T, Giráldez JV. 2018. Experimental analyses of the evaporation dynamics in bare soils under natural conditions. Water Resour Manag. 32:1153–1166. doi:10.1007/s11269-017-1860-x
  • Foster MD. 1954. The relation between composition and swelling in clays. Clay Clay Miner. 3:205–220. doi:10.1346/CCMN.1954.0030117
  • Haj-Amor Z, Bouri S. 2019. Use of HYDRUS-1D-GIS tool for evaluating effects of climate changes on soil salinization and irrigation management. Arch Agron Soil Sci. 1–15. doi:10.1080/03650340.2019.1608438
  • He B, Cai Y, Ran W, Jiang H. 2014. Spatial and seasonal variations of soil salinity following vegetation restoration in coastal saline land in eastern China. Catena 118:147–153. doi:10.1016/j.catena.2014.02.007
  • Hillel D. 1998. Environmental soil physics. United State: Academic Press.
  • Hou L, Zhou Y, Bao H, Wenninger J. 2016. Simulation of maize (Zea mays L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu river catchment, Northwest China. Hydrolog Sci J. 62:1–11. doi:10.1080/02626667.2016.1170130
  • Kolpp HW. 2015. Soil salinity and sodicity impacts on soil shrinkage, water movement and retention [M.S. thesis]. North Dakota (USA): North Dakota State University.
  • Kostiakov AN. 1932. On the dynamics of the co-efficient of water percolation in soils. In: Sixth commission, international society of soil science, part A. p. 15–21.
  • Lei Z, Yang S, Xie S. 1988. Soil hydrodynamics. China: Tsinghua University Press.
  • Lekakis EH, Antonopoulos VZ. 2015. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport. J Hydrol. 530:431–446. doi:10.1016/j.jhydrol.2015.09.070
  • Levy GJ, Mamedov AI, Goldstein D. 2003. Sodicity and water quality effects on slaking of aggregates from semi-arid soils. Soil Sci. 168:552–562. doi:10.1097/01.ss.0000085050.25696.52
  • Ma D, Zhang J, Lu Y, Wu L, Wang Q. 2015. Derivation of the relationships between Green-Ampt model parameters and soil hydraulic properties. Soil Sci Soc Am J. 79:1030–1042. doi:10.2136/sssaj2014.12.0501
  • Mao L, Li Y, Hao W, Zhou X, Xu C, Lei T. 2016. A new method to estimate soil water infiltration based on a modified Green-Ampt model. Soil Till Res. 161:31–37. doi:10.1016/j.still.2016.03.003
  • Mguidiche A, Provenzano G, Douh B, Khila S, Rallo G, Boujelben A. 2015. Assessing hydrus-2D to simulate soil water content (SWC) and salt accumulation under and SDI system: application to a potato crop in a semi-arid area of central Tunisia. Irrig Drain. 64:263–274. doi:10.1002/ird.1884
  • Moriasi DN, Arnold JG, van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE. 50:885–900. doi:10.13031/2013.23153
  • Nie W, Li Y, Liu Y, Ma X. 2018. An approximate explicit Green-Ampt infiltration model for cumulative infiltration. Soil Sci Soc Am J. 82:919–930. doi:10.2136/sssaj2017.11.0404
  • Šimunek J, Bristow KL, Helalia SA, Siyal AA. 2016. The effect of different fertigation strategies and furrow surface treatments on plant water and nitrogen use. Irrig Sci. 34:53–69. doi:10.1007/s00271-015-0487-z
  • Šimunek J, Šejna M, Saito H, Sakai M, van Genuchten MT. 2009. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Riverside (CA): Department of Environmental Sciences University of California Riverside.
  • Šimunek J, Vogel T, van Genuchten MT. 1994. The SWMS_2D code for simulating water flow and solute transport in two-dimensional variably saturated media. Riverside (CA): U.S. Department of Agriculture.
  • Smerdon BD, Drew JE. 2017. Groundwater recharge: the intersection between humanity and hydrogeology. J Hydrol. 555:909–911. doi:10.1016/j.jhydrol.2017.10.075
  • Srivastava R, Yeh TCJ. 1991. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour Res. 27:753–762. doi:10.1029/90WR02772
  • Su L, Wang J, Qin X, Wang Q. 2017. Approximate solution of a one-dimensional soil water infiltration equation based on the Brooks-Corey model. Geoderma 297:28–37. doi:10.1016/j.geoderma.2017.02.026
  • Su L, Yang X, Wang Q, Qin X, Zhou B, Shan Y. 2018. Functional extremum solution and parameter estimation for one-dimensional vertical infiltration using the Brooks-Corey model. Soil Sci Soc Am J. 82:1319–1332. doi:10.2136/sssaj2018.01.0016
  • Wang Q, Horton R, Shao M. 2003. Algebraic model for one-dimensional infiltration and soil water distribution. Soil Sci. 168:671–676. doi:10.1097/01.ss.0000095140.68539.8e
  • Wang Q, Shao M, Horton R. 2004. A simple method for estimating water diffusivity of unsaturated soils. Soil Sci Soc Am J. 68:713–718. doi:10.2136/sssaj2004.7130
  • Wang Q, Shao M, Zheng J. 2007. Water movement and solute transport in soils. China: China WaterPower Press.
  • Warrence NJ, Bauder JW, Pearson KE. 2002. Basics of salinity and sodicity effects on soil physical properties. MT: Departement of Land Resources and Environmental Sciences, Montanta State University-Bozeman.
  • Xia T, Qi Y, Liu J, Qi Z, Chen W, Wiesner MR. 2017. Cation-inhibited transport of graphene oxide nanomaterials in saturated porous media: the hofmeister effects. Environ Sci Technol. 51:828–837. doi:10.1021/acs.est.6b05007
  • Xing X, Kang D, Ma X. 2017. Differences in loam water retention and shrinkage behavior: effects of various types and concentrations of salt ions. Soil Till Res. 167:61–72. doi:10.1016/j.still.2016.11.005
  • Xing X, Li Y, Ma X. 2018a. Water retention curve correction using changes in bulk density during data collection. Eng Geol. 233:231–237. doi:10.1016/j.enggeo.2017.12.018
  • Xing X, Liu Y, Ma X. 2019. A modified van-Genuchten model for soil-water retention modeling by considering plant additives. Arch Agron Soil Sci. 65:435–449. doi:10.1080/03650340.2018.1506583
  • Xing X, Wang H, Ma X. 2018b. Brooks-Corey modeling by one-dimensional vertical infiltration method. Water 10:593–603. doi:10.3390/w10050593

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.