197
Views
1
CrossRef citations to date
0
Altmetric
Articles

Relationship of red and red-edge reflectance-based vegetation indices with stalk and fiber yield of energy cane harvested at different dates

, , &
Pages 1888-1907 | Received 05 Jun 2018, Accepted 03 Dec 2019, Published online: 30 Dec 2019

References

  • Baldwin B, Anderson WF, Blumenthal J, Brummer EC, Gravois K, Hale AL, Wilson LT. 2012. Regional testing of energycane (Saccharum spp) genotypes as a potential bioenergy crop. Proceedings of Science for Biomass Feedstock Production and Utilization Conference. p. 3.
  • Barger GL. 1969. Total growing degree days. Weekly Weather Crop Bull. 56:10.
  • Begue A, Lebourgeois V, Bappel E, Todoroff P, Pellegrino A, Baillarin F, Siegmund B. 2010. Spatio-temporal variability of sugarcane fields and recommendations for yield forecasting using NDVI. Int J Remote Sens. 31:5391–5407. doi:10.1080/01431160903349057.
  • Begue A, Todoroff P, Pater J. 2008. Multi-time scale analysis of sugarcane within-field variability: improved crop diagnosis using satellite time series. Precis Agric. 9:161–171. doi:10.1007/s11119-008-9063-3.
  • Blackburn GA, Pitman JI. 1999. Biophysical controls on the directional spectral reflectance properties of bracken (Pteridium aquilinum) canopies: results of a field experiment. Int J Remote Sens. 20:2265–2282. doi:10.1080/014311699212245.
  • Chanda S. 2015. The agronomic use and application of canopy reflectance within the visible and near-infrared wavebands and its relation with nitrogen fertilization in energy cane production in Louisiana [dissertation]. School of Plant, Environmental, and Soil Sciences. Louisiana State University.
  • Clevers JGPW, De Jong SM, Epema GF, Addink EA, Van Der Meer F, Skidmore AK. 2000. Meris and the red-edge index. Second EARSeL workshop on imaging spectroscopy. Enschede: EARSeL; p. 1–16.
  • Curran PJ. 1989. Remote sensing of foliar chemistry. Remote Sen Environ. 30:271−278. doi:10.1016/0034-4257(89)90069-2.
  • Elvidge CD. 1990. Visible and near infrared reflectance characteristics of dry plant materials. Int J Remote Sens. 11:1775−1795. doi:10.1080/01431169008955129.
  • Elvidge CD, Chen Z. 1995. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ. 54:38–48. doi:10.1016/0034-4257(95)00132-K.
  • Filella I, Peñuelas J. 1994. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int J Remote Sens. 15:1459–1470. doi:10.1080/01431169408954177.
  • Galvao LS, Formaggio AR, Tisot DA. 2005. Discrimination of sugarcane varieties of southeastern Brazil with EO-1 hyperion data. Remote Sens Environ. 94:523–534. doi:10.1016/j.rse.2004.11.012.
  • Gao X, Huete AR, Ni W, Miura T. 2000. Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ. 74:609–620. doi:10.1016/S0034-4257(00)00150-4.
  • Hansen PM, Schjoerring JK. 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ. 86:542–553. doi:10.1016/S0034-4257(03)00131-7.
  • Harrell D, Tubaña BS, Walker TW, Phillips SB. 2011. Estimating rice grain yield potential using normalized difference vegetation index. Agron J. 103:1717–1723. doi:10.2134/agronj2011.0202.
  • Hayes MJ, Decker WL. 1996. Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. Int J Remote Sens. 17:3189–3200. doi:10.1080/01431169608949138.
  • Hoffer RM. 1978. Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data. In: Swain PH, Davis SM, editors. Remote sensing: the quantitative approach. New York (NY): McGraw-Hill International Book Company; p. 227–289.
  • Inman-Barber NG. 1994. Temperature and seasonal effect on canopy development and light interception of sugarcane. Field Crop Res. 36:41–51. doi:10.1016/0378-4290(94)90051-5.
  • Jordan CF. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecol. 50:663–666. doi:10.2307/1936256.
  • Kanke Y 2013. Optimizing yield and crop nitrogen response characterization by integrating spectral reflectance and agronomic properties in sugarcane and rice [dissertation]. School of Plant, Environmental, and Soil Sciences. Louisiana State University.
  • Kanke Y, Tubaña B, Dalen M, Harrell D. 2016. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Preci Agric. 17:507. doi:10.1007/s11119-016-9433-1.
  • Kokaly RF. 2001. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens Environ 75:153−161.
  • Kumar L, Schmidt KS, Dury S, Skidmore AK. 2001. Imaging spectrometry and vegetation science. In: van der Meer F, de Jong SM, editors. Imaging spectrometry. Dordrecht: Kluwer Academic; p. 111-115.
  • Kwong KFN, Deville J. 1994. The course of fertilizer nitrogen uptake by rain-fed sugarcane in Mauritius. J Agric Sci. 122:385–391. doi:10.1017/S0021859600067319.
  • Lichtenthaler HK, Gitelson A, Lang M. 1996. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant tobacco by reflectance measurements. J Plant Physiol. 148:483–493. doi:10.1016/S0176-1617(96)80283-5.
  • Lillesand TM, Kiefer RW, Chipman JW. 2008. Remote sensing and image interpretation. 6th ed. New York (NY): John Wiley & Sons; p. 1.
  • Lofton J, Tubana BS, Kanke Y, Teboh J, Viator H. 2012a. Predicting sugarcane response to nitrogen using a canopy reflectance-based response index value. Agron J. 104:106–113. doi:10.2134/agronj2011.0254.
  • Lofton J, Tubaña B, Teboh J, Kanke Y, Viator H. 2012b. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors. 12:7529–7547. doi:10.3390/s120607529.
  • Lukina EV, Raun WR, Stone ML, Solie JB, Johnson GV, Lees HL, LaRuffa JM, Phillips SB. 2000. Effect of row spacing, growth stages, and nitrogen rate on spectral irradiance in winter wheat. J Plant Nutr. 23:103–122. doi:10.1080/01904160009382001.
  • Meer FVD, Jong SM. 2006. Imaging spectrometry for agriculture applications. In: Clevers JGPW, Jongschaap R, editors. Imaging spectrometry: basic principal and prospective application. Dordrecht (Netherlands): Springer; p. 157–197.
  • Mehlich A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Comm Soil Sci Plant Anal. 15:1409–1416. doi:10.1080/00103628409367568.
  • Mutanga O, Skidmore AK. 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int J Remote Sens. 25:3999–4014. doi:10.1080/01431160310001654923.
  • Prasad AK, Lim C, Singh RP, Kafatos M. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int J Appl Earth Obs Geoinf. 8:26–33. doi:10.1016/j.jag.2005.06.002.
  • Rao PVK, Rao VV, Venkataratnam L. 2002. Remote sensing: a technology for assessment of sugarcane crop acreage and yield. Sugar Tech. 4:97–101. doi:10.1007/BF02942689.
  • Raun WR, Solie JB, Johnson GV, Stone ML, Lukina EV, Thomason WE. 1999. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J. 93:131–138. doi:10.2134/agronj2001.931131x.
  • Raun WR, Solie JB, Johnson GV, Stone ML, Mullens RW, Freeman KW, Thomason WE, Lukina EV. 2002. Improving nitrogen use efficiency in cereal grain production with sensing and variable rate applications. Agron J. 94:815–820. doi:10.2134/agronj2002.8150.
  • Raun WR, Solie JB, Stone ML, Martin KL, Freeman KW, Mullen RW, Zhang H, Schepers JS, Johnson GV. 2005. Optical sensor‐based algorithm for crop nitrogen fertilization. Comm Soil Sci Plant Anal. 36:2759–2781. doi:10.1080/00103620500303988.
  • Reynolds M, Yittayew DC. 2000. Slack, Estimation crop yields and production by integrating the FAO Crop Speci. C Water Balance model with real-time satellite data and ground based ancillary data. Int J Remote Sens. 18:3487–3508. doi:10.1080/014311600750037516.
  • Ritchie GL. 2003. Use of ground-based canopy reflectance to determine radiation capture, nitrogen and water status, and final yield in wheat [master’s thesis]. Utah State University.
  • Robertson MJ, Bonnett GD, Hughes RM, Muschow RC, Campbell JA. 1998. Temperature and leaf are expansion of sugarcane: integration of controlled-environments, field, and model studies. Aust J Plant Physiol. 25:819–828.
  • Rouse JW, Haas RH, Schell JA, Deering DW. 1973. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium; Washington, DC: NASA. p. 309–317.
  • SAS Institute. 2012. SAS for Windows v. 9.4. Cary (NC): SAS Inst. .
  • Sellers PJ. 1985. Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens. 6:1335–1372. doi:10.1080/01431168508948283.
  • Simoes MDS, Rocha JV, Lamparelli RAC. 2005. Spectral variables, growth analysis and yield of sugarcane. Sci Agric. 62:199–207. doi:10.1590/S0103-90162005000300001.
  • Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. 81:337–354. doi:10.1016/S0034-4257(02)00010-X.
  • Sinclair TR, Gilbert RA, Perdomo RE, Shine JM, Powell G, Montes G. 2004. Sugarcane leaf area development under field conditions in Florida, USA. Field Crop Res. 88:171–178. doi:10.1016/j.fcr.2003.12.005.
  • Teal RK, Tubana BS, Girma K, Freeman KW, Arnall DB, Walsh O, Raun WR. 2006. In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron J. 98:1488–1494. doi:10.2134/agronj2006.0103.
  • Thenkabail PS, Smith RB, de Pauw E. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ. 71:158–182. doi:10.1016/S0034-4257(99)00067-X.
  • Todd SW, Hoffer RM. 1998. Responses of spectral indices to variations in vegetation cover and soil background. Photogramm Eng Rem Sens. 64:915–922.
  • Treitz PM, Howarth PJ. 1999. Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Prog Phys Geogr. 23:359–390. doi:10.1177/030913339902300303.
  • Tubana BS, Arnall DB, Walsh O, Chung B, Solie JB, Girma K. 2008. Adjusting midseason nitrogen rate using a sensor-based optimization algorithm to increase use efficiency in corn. J Plant Nutr. 31:1393–1419. doi:10.1080/01904160802208261.
  • Tucker CJ. 1977. Asymptotic nature of grass canopy spectral reflectance. Appl Opt. 16:1151–1156. doi:10.1364/AO.16.001151.
  • Viña A, Gitelson A. 2005. New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophys Res Lett. 32:L17403. doi:10.1029/2005GL023647.
  • Wessman CA. 1990. Evaluation of canopy biochemistry. In: Hobbs RJ, Mooney HA, editors. Remote sensing of biosphere functioning. New York (NY): Springer-Verlag; p. 135−156.
  • Wiegand C, Richardson AJ, Kanemasu ET. 1979. Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling. Agron J. 71:336–342. doi:10.2134/agronj1979.00021962007100020027x.
  • Zhao D, Reddy KR, Kakani KG, Read JJ, Carter GA. 2003. Corn growth, leaf pigment concentration, photosynthesis, and leaf hyper-spectral reflectance properties as affected by nitrogen supply. Plant Soil. 257:205–217. doi:10.1023/A:1026233732507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.