335
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Role of rhizospheric microorganisms in mitigating the adverse effect of salinity stress in Plantago ovata growth, biochemical and photosynthetic traits

, ORCID Icon, ORCID Icon &
Pages 1060-1074 | Received 03 Oct 2019, Accepted 26 May 2020, Published online: 07 Aug 2020

References

  • Ahemad M, Kibert M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci. 26:1–20.
  • Arzani A, Ashraf M. 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critic Rev Plant Sci. 35(3):146–189. doi:10.1080/07352689.2016.1245056.
  • Ashraf M, Harris PJC. 2013. Photosynthesis under stressful environments: an overview. Photosynthetica. 51(2):163–190.
  • Bano A, Fatima M. 2009. Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fert Soil. 45:405–413. doi:10.1007/s00374-008-0344-9.
  • Barea J, Pozo M, Azcón R, Aguilar C. 2005. Microbial co-operation in the rhizosphere. J Exp Bot. 56:1761–1778.
  • Bars H, Weatherly PE. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Bio Sci. 15:413–428. doi:10.1071/BI9620413.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Bazrafshan AH, Ehsanzadeh P. 2014. Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica. 52(1):134–147. doi:10.1007/s11099-014-0015-z.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. doi:10.1016/0003-2697(71)90370-8.
  • Burducea M, Zheljazkov VD, Dincheva I, Lubioc A, Teliban GC, Stoleru V, Zamfirache MM. 2018. Fertilization modifies the essential oil and physiology of basil varieties. Ind Crops Prod. 12:282–293. doi:10.1016/j.indcrop.2018.05.021.
  • Chance M, Maehly AC. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764–817.
  • Dehindsa RS, Dehindsa PP, Thorpe TA. 1981. Leaf Senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 32(1):93–101. doi:10.1093/jxb/32.1.93.
  • Dhar MK, Kaul S, Sareen S, Koul AK. 2005. Plantago ovata: genetic diversity, cultivation, utilization and chemistry. Plant Gen Res. 3(2):252–263. doi:10.1079/PGR200582.
  • Egamberdieva D, Jabborova D, Hashem A. 2015. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Soil Sci. 22:773–779.
  • Garg N, Chandel S. 2015. Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul. 75:521–534. doi:10.1007/s10725-014-0016-8.
  • Govahi M, Ghalavand A, Nadjafi F, Sorooshzadeh A. 2015. Comparing different soil fertility systems in Sage (Salvia officinalis) under water deficiency. Ind Crops Prod. 74:20–27. doi:10.1016/j.indcrop.2015.04.053.
  • Haneef I, Faizan S, Perveen R, Kausar S. 2014. Impact of bio-fertilizers and different levels of cadmium on the growth, biochemical contents and lipid peroxidation of Plantago ovata Forsk. Saudi J Bio Sci. 21(4):305–310. doi:10.1016/j.sjbs.2013.12.005.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–98. doi:10.1016/0003-9861(68)90654-1
  • Holford ICR. 1997. Soil phosphorus: its measurement, and its uptake by plants. Soil Res. 35(2):227–240. doi:10.1071/S96047.
  • Horneck DA, Hanson D. 1998. Determination of potassium and sodium by flame emission spectrophotometry. In: YP K, editor. Handbook of reference methods for plant analysis. Boca Raton: CRC Press; p. 153–155.
  • Izadi-Darbandi E, Mehdikhani H. 2018. Salinity effect on some of the morphophysiological traits of three plantago species (Plantago spp.). Sci Hort. 236:43–51. doi:10.1016/j.scienta.2018.01.059.
  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Int. 9(10):673–682.
  • Khademian R, Asghari B, Sedaghati B, Yaghoubian Y. 2019. Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): physio-biochemical properties, fatty acids composition and secondary metabolites content. Ind Crops Prod. 136:129–139. doi:10.1016/j.indcrop.2019.05.002.
  • Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T. 2016. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhance the tolerance of maize to salinity in coastal reclamation soil. Agr Eco Environ. 231:233–239. doi:10.1016/j.agee.2016.05.037.
  • Kumar A, Verma JP. 2018. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microb Res. 207:41–52. doi:10.1016/j.micres.2017.11.004.
  • Lacerda CF, Cambraia J, Oliva MA, Ruiz HA. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot. 54(1):69–76. doi:10.1016/j.envexpbot.2004.06.004.
  • Lichtenthaler HK. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol. 148:331–382.
  • Lutts S, Kinet JM, Bouhamont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot. 76(3):389–398. doi:10.1006/anbo.1996.0134.
  • Mansour MMF, Ali EF. 2017. Evaluation of proline functions in saline conditions. Phytochemistry. 140:52–68. doi:10.1016/j.phytochem.2017.04.016.
  • Marion GM, Babcock KL. 1976. Predicting specific conductance and salt concentration in dilute aqueous solutions. Soil Sci. 122(4):181–187. doi:10.1097/00010694-197610000-00001.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9):405–410. doi:10.1016/S1360-1385(02)02312-9.
  • Mostafazadeh-Fard B, Heidarpour M, Aghakhani A, Feizi M. 2007. Effects of irrigation water salinity and leaching on soil chemical properties in an arid region. Int J Agric Biol. 3:166–462.
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5):867–880.
  • Olsen S, Cole C, Watanabe F, Dean L 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington (DC): US Gov. Print. Office. USDA Circular Nr 939
  • Rawia A, Eid S, Abo-sedera A, Attia M. 2006. The Influence of nitrogen fixing bacteria incorporation with the organic and/or inorganic nitrogen fertilizers on the growth, flower yield and chemical composition of Celosia argentea. World J Agri Sci. 2(4):450–458.
  • Richards LA. 1954. Diagnosis and improvement of saline-alkali soils. USDA Handbook; p. 60.Washington DC: USA Government Printing Office.
  • Richter J, Stutzer M, Schellenberg I 2005. The Effects of mycorrhization on the essential oil content and the composition of aroma components of marjoram (Marjorana hortensis), thyme (Thymus vulgaris L.) and caraway (Carum carvi L.). In: 36th International Symposium on Essential Oils; Sep 4–7; Budapest, Hungary.
  • Schreiber U, Schliwa U, Bilger W. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 10(1–2):51–62. doi:10.1007/BF00024185.
  • Sharma PK, Koul AK. 1986. Mucilage in seeds of plantago ovata and its wild allies. J Ethnopharmacol. 17:289–295. doi:10.1016/0378-8741(86)90118-2.
  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. 2002. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot. 53(372):1305–1319. doi:10.1093/jexbot/53.372.1305.
  • Shukla N, Awshti RP, Rawat L, Kumar J. 2012. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem. 54:78–88. doi:10.1016/j.plaphy.2012.02.001.
  • Spence C, Bais H. 2015. Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr Opin Plant Biol. 27:52-58.
  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Giessler-Plaum R, Schnell S. 2015. Plant growth-promoting effects of Hartmannibacter diazotrophic on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol. 95:23–30. doi:10.1016/j.apsoil.2015.04.017.
  • Tahami MK, Jahan M, Khalilzadeh H, Mehdizadeh M. 2017. Plant growth promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Ind Crops Prod. 107:97–104. doi:10.1016/j.indcrop.2017.05.020.
  • Tank N, Saraf M. 2010. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Int. 5(1):51–58.
  • TCS S-K, Pinto E, Okamoto OK, Latorre LR, Colepicolo P. 2002. Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol Plant. 114(4):566–571. doi:10.1034/j.1399-3054.2002.1140409.x.
  • Turrkan I, Demiral T. 2009. Recent developments in understanding salinity tolerance. Environ Exp Bot. 67:2–9. doi:10.1016/j.envexpbot.2009.05.008.
  • Vardharajula S, Zulfikar S, Grover M, Reddy G, Bandi V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth osmolytes, and antioxidant status of maize under drought stress. J Plant Int. 6:1–14.
  • Vestberg M, Saari K, Kukkonen S, Hurme T. 2005. The mycotrophy of the crops in rotation and soil amendment with peat influence on the abundance and effectiveness of the indigenous arbuscular mycorrhizal fungi in field soil. Mycorrhiza. 15:447–458. doi:10.1007/s00572-005-0349-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.