232
Views
7
CrossRef citations to date
0
Altmetric
Articles

Tillage and crop residue incorporation effects on soil bacterial diversity in the double-cropping paddy field of southern China

, , , , , , , & show all
Pages 435-446 | Received 10 Dec 2019, Accepted 22 Jun 2020, Published online: 07 Jul 2020

References

  • Abiala MA, Odebode AC, Hsu SF, Blackwood CB. 2015. Phytobeneficial properties of bacteria isolated from the rhizosphere of maize in southwestern Nigerian soils. Appl Environ Microbiol. 81(14):4736–4743. doi:10.1128/AEM.00570-15.
  • Bach EM, Baer SG, Meyer CK, Six J. 2010. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem. 42(12):2182–2191. doi:10.1016/j.soilbio.2010.08.014.
  • Berthrong ST, Buckley DH, Drinkwater LE. 2013. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microb Ecol. 66(1):158–170. doi:10.1007/s00248-013-0225-0.
  • Bu RY, Ren T, Lei MJ, Liu B, Li XK, Cong RH, Zhang YY, Lu JW. 2020. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system. Agr Ecosyst Environ. 287:106681. doi:10.1016/j.agee.2019.106681.
  • Ceja-Navarro JA, Rivera-Orduna FN, Patino-Zuniga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L. 2010. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol. 76(11):3685–3691. doi:10.1128/AEM.02726-09.
  • Chen HQ, Liang Q, Gong YS, Kuzyakov Y, Fan MS, Plante AF. 2019. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil Till Res. 194:104296. doi:10.1016/j.still.2019.104296.
  • Chen ZD, Ti FS, Chen F. 2017. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China. Nutr Cycl Agroecosys. 109(2):103–114. doi:10.1007/s10705-017-9864-8.
  • Dash PK, Bhattacharyya P, Shahid M, Roy PS, Padhy SR, Swain CK, Kumar U, Kumar A, Gautam P, Lal B, et al. 2019. Structural diversity and efficacy of culturable cellulose decomposing bacteria isolated from rice-pulse resource conservation practices. Drug Dev Ind Pharm. 45:963–978.
  • Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461.
  • Gu Y, Wang P, Kong CH. 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol. 45(5–6):436–441. doi:10.1016/j.ejsobi.2009.06.003.
  • Helgason BL, Walley FL, Germida JJ. 2009. Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Sci Soc Am J. 73(1):120–127. doi:10.2136/sssaj2007.0392.
  • Huang XM, Liu SR, Wang H, Hu ZD, Li ZG, You YM. 2014. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biol Biochem. 73:42–48. doi:10.1016/j.soilbio.2014.01.021.
  • Jacobs A, Helfrich M, Hanisch S, Quendt U, Rauber R, Ludwig B. 2010. Effect of conventional and minimum tillage on physical and biochemical stabilization of soil organic matter. Biol Fert Soils 46(7):671–680. doi:10.1007/s00374-010-0472-x.
  • Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, Kemmitt S, Evershed RP, O’Donnell AG. 2010. Taxon specific responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem. 42(9):1624–1631. doi:10.1016/j.soilbio.2010.06.002.
  • Jiang X, Wright AL, Wang J, Li Z. 2011. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. Catena 87(2):276–280. doi:10.1016/j.catena.2011.06.011.
  • Li H, Ye DD, Wang XG, Settles ML, Wang J, Hao ZQ, Zhou LS, Dong P, Jiang Y, Ma ZS. 2014. Soil bacterial communities of different natural forest types in Northeast China. Plant Soil 383(1–2):203–216. doi:10.1007/s11104-014-2165-y.
  • Li T, Sun ZG, He CN, Ge XY, Ouyang Z, Wu LF. 2020. Changes in soil bacterial community structure and microbial function caused by straw retention in the North China Plain. Arch Agron Soil Sci. 66(1):46–57. doi:10.1080/03650340.2019.1593382.
  • Lienhard P, Terrat S, Prévost-Bouré NC, Nowak V, Régnier T, Sayphoummie S, Panyasiri K, Tivet F, Mathieu O, Levêque J, et al. 2013. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron Sustain Dev. 34(2):525–533. doi:10.1007/s13593-013-0162-9.
  • Minoshima H, Jackson LE, Cavagnaro TR, Sánchez-Moreno S, Ferris H, Temple SR, Goyal S, Mitchell JP. 2007. Soil food webs and carbon dynamics in response to conservation tillage in California. Soil Sci Soc Am J. 71(3):952–963. doi:10.2136/sssaj2006.0174.
  • Navarro-Noya YE, Gomez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suarez-Arriaga MC, Valenzuela-Encinas C, Jimenez-Bueno N, Verhulst N, Govaerts B, Dendooven L. 2013. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem. 65:86–95. doi:10.1016/j.soilbio.2013.05.009.
  • Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC. 2013. Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol Ecol. 86(1):71–84. doi:10.1111/1574-6941.12092.
  • Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S, Mathieu O, Leveque J, Mougel C, Henault C, et al. 2013. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 16(5):810–822. doi:10.1007/s10021-013-9650-7.
  • Pastorelli R, Vignozzi N, Landi S, Piccolo R, Orsini R, Seddaiu G, Roggero PP, Pagliai M. 2013. Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy. Soil Biol Biochem. 66:78–93. doi:10.1016/j.soilbio.2013.06.015.
  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS. 110(16):6548–6553. doi:10.1073/pnas.1302837110.
  • Prakash R, Singh D, Pathak NP. 2010. The effect of soil texture in soil moisture retrieval for specular scattering at c-band. Prog Electromagnet Res-Pier. 108:177–204. doi:10.2528/PIER10050403.
  • Rodrigues JL, Pellizari VH, Mueller R, Baek K, Jesus EC, Paula FS, Mirza B, Hamaoui GSJ, Tsai SM, Feigl B, et al. 2013. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. PNAS. 110(3):988–993. doi:10.1073/pnas.1220608110.
  • SAS. 2008. SAS software of the SAS system for windows. Cary (NC, USA): SAS Institute Inc.
  • Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. 2018. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLOS One 13(2):e0192953. doi:10.1371/journal.pone.0192953.
  • Sun BJ, Jia SX, Zhang SX, McLaughlin NB, Zhang XP, Liang AZ, Chen XW, Wei SC, Liu SY. 2016. Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China. Soil Till Res. 155:421–428. doi:10.1016/j.still.2015.09.014.
  • Tang HM, Xiao XP, Li C, Tang WG, Pan XC, Cheng KK, Guo LJ, Wang K, Li WY, Sun G. 2020. Impact of tillage practices on soil aggregation and humic substances under double-cropping paddy field. Agron J. 112(1):624–632. doi:10.1002/agj2.20051.
  • Trasar-Cepeda C, Camiña F, Leirós MC, Gil-Sotres F. 1999. An improved method to measure catalase activity in soils. Soil Biol Biochem. 31(3):483–485. doi:10.1016/S0038-0717(98)00153-9.
  • Wang Y, Tu C, Cheng L, Li CY, Gentry LF, Hoyt GD, Zhang XC, Hu SJ. 2011. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil Till Res. 117:8–16. doi:10.1016/j.still.2011.08.002.
  • Wang ZT, Li T, Li YZ, Zhao DQ, Han J, Liu Y, Liao YC. 2020. Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil Till Res. 196:104431. doi:10.1016/j.still.2019.104431.
  • Wang ZT, Liu L, Chen Q, Wen XX, Liao YC. 2016. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron Sustain Dev. 36(2):28. doi:10.1007/s13593-016-0366-x.
  • Wardle DA, Zackrisson O. 2005. Effects of species and functional group loss on island ecosystem properties. Nature 435(7043):806–810. doi:10.1038/nature03611.
  • Yang XY, Ren WD, Sun BH, Zhang SL. 2012. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177–178:49–56. doi:10.1016/j.geoderma.2012.01.033.
  • Zhao J, Zhang R, Xue C, Xun W, Sun L, Xu Y, Shen Q. 2014. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol. 67(2):443–453. doi:10.1007/s00248-013-0322-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.