343
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The effect of nitrogen-modified lignite granules on mycorrhization and root and shoot growth of Secale cereale (winter rye) in a nutrient-deficient, sandy soil

ORCID Icon, ORCID Icon, &
Pages 1117-1130 | Received 27 Jul 2020, Accepted 23 Dec 2020, Published online: 06 Jan 2021

References

  • Agegnehu G, Srivastava AK, Bird MI. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol. 119:156–170.
  • Asmelash F, Bekele T, Birhane E. 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol. 7:1095.
  • Bakry BA, Ibrahim OM, Eid AR, Badr EA. 2014. Effect of humic acid, mycorrhiza inoculation, and biochar on yield and water use efficiency of flax under newly reclaimed sandy soil. Agric Sci. 5:1427–1432.
  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. 2019. Role of arbuscular mycorrhizal fungi in the plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 10:1068.
  • Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 84(1):11–18.
  • Bitterlich M, Mercy L, Arato M, Franken P. 2020. Arbuscular mycorrhizal fungi as biostimulants for sustainable crop production. In: Rouphael Y, du Jardin P, Brown P, De Pascale S, Colla G, editors. Biostimulants for sustainable crop production, Burleigh Dodds Science Publishing, Sawston, Cambridge;  p. 227–272.
  • Boldt-Burisch K, Gerke H, Nii-Annang S, Schneider BU, Hüttl RF. 2013. Root system development of Lotus corniculatus L. in calcareous sands with embedded finer-textured fragments in an initial soil. Plant Soil. 368(1–2):281–296.
  • Boldt-Burisch K, Schneider BU, Naeth MA, Hüttl RF. 2018. Root exudation of organic acids of herbaceous pioneer plants and their growth in sterile and non-sterile nutrient-poor, sandy soils from post-mining sites. Pedosphere. 29(1):34–44.
  • Corkidi L, Rowland DL, Johnson NC, Allen EB. 2002. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil. 240:299310.
  • Dickie IA, Koele N, Blum JD, Gleason JD, McGlone MS. 2014. Mycorrhizas in changing ecosystems. Botany. 92(2):149–160.
  • DIN ISO 10694, Teil 8. 1996, 1994. Bodenbeschaffenheit. Bestimmung von organischem Kohlenstoff und Gesamtkohlenstoff nach trockener Verbrennung (Elementaranalyse [elemental analysis]). Berlin: Beuth.
  • Du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci Hort. 196:3–14.
  • Fellbaum C, Mensah JA, Pfeffer PE, Kiers ET, Bücking H. 2012. The role of carbon in the fungal nutrient uptake and transport. Plant Signal Behav. 7(11):1509–1512.
  • Feng Y, Wang J, Bai Z, Reading L. 2019. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci Rev. 191:12–25.
  • Fouad M, Essahibi A, Benhiba L, Qaddoury A. 2014. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res. 12(3):763–771.
  • Friese CF, Allen MF. 1991. The spread of VA mycorrhizal fungal hyphae in the soil – inoculum types and external hyphal architecture. Mycologia. 83:409–418.
  • Greipsson S, El-Mayas H. 2000. Arbuscular mycorrhizae of leymus arenarius on coastal sands and reclamation sites in iceland and response to inoculation. Restor Ecol. 8(2):144–150.
  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils. 37:1–16.
  • Johnson NC. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185:631–647.
  • Kafhagi EY, El-Abeid SE, Soliman MS, El-Nahas SESM, Ahmed Y. 2018. Role of arbuscular mycorrhizae fungi and humic acid in controlling root and crown rot of strawberry. Plant Pathol. 17(2):6–74.
  • Kape H-E, von Wulffen U, Roschke M 2008. Richtwerte für die Untersuchung und Beratung zur Umsetzung der Düngeverordnung in Mecklenburg-Vorpommern [Preference values for investigation and consulting converning the implementation of the fertiliser ordinance]. German: Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz Mecklenburg-Vorpommern (Hrsg)
  • Karlen DL, Rice CW. 2015. Soil degradation: will humankind ever learn? Sustainability. 7:12490–12501.
  • Katzur J, Böcker L. 2007. Landwirtschaftlicher Testversuch zur Verwendung von N-modifizierter Weichbraunkohle als Humusdüngestoff bei der Rekultivierung von Kippenböden des Braunkohletagebaus [Agricultural tests for using N-modified soft brown coal as humus fertilizer for re-cultivating dump soils left by brown coal mining]. Arch Agron Soil Sci. 53(4):355–389. (in German).
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - A review. Soil Biol Biochem. 43:1812–1836.
  • Lodhi A, Tahir S, Iqbal Z, Mahmood A, Akhtr M, Qureshi TM, Yaqub M, Naeem A. 2013. Characterization of commercial humic acids samples and their impact on growth of fungi and plants. Soil Environ. 32(1):63–70.
  • MacCarthy P. 2001. The principle of humic substances. Soil Sci. 166(11):738–751.
  • Martin-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R. 2018. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop plants. New Phytol. 218:322–334.
  • Montgomery DR. 2007. Soil erosion and agricultural stability. Proc Natl Acad Sci. 104(33):13268–13272.
  • Morelli F, Ferarrese L, Munhoz CL, Alberton O. 2017. Antimicrobial activity of essential oil and growth of ocimum basilicum (L.) inoculated with mycorrhiza and humic substances applied to soil. Genet Mol Res. 16(3):gmr16039710.
  • Ninnemann H, Fischer K, Brendler E, Liebner M, Rosenau T, Liebner F. 2011. Characterisation of humic matter fractions isolated from ammonoxidised miocene lignite. J Biobased Mater Bioenergy. 5:241–252.
  • Niwa R, Koyama T, Sato T, Adachi K, Tawaraya K, Sato S, Hirakawa H, Yoshida S, Ezawa T. 2018. Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses. Sci Rep. 8:7419.
  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. 2014. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. Plos One. 9(3):e90841.
  • Owen D, Williams AP, Griffith GW, Withers PJA. 2014. Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol. 86:41–54.
  • Pellegrino E, Öpik M, Bonari E, Ercoli L. 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem. 84:210–217.
  • Qin K, Dong X, Jifon J, Leskovar DI. 2019. Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Appl Soil Ecol. 138:80–87.
  • Rillig CM, Mummey DL. 2006. Mycorrhizas and soil structure. New Phytol. 171:41–53.
  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR. 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron. 124:37–89.
  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hort. 196:91–108.
  • Ruiz-Lozano JM, Azcon R, Gomez M. 1995. Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant response. Appl Environ Microbiol. 61(2):456–460.
  • Schillem S, Schneider BU, Zeihser U, Hüttl RF. 2019. Effect of N-modified lignite granulates and composted biochar on plant growth, nitrogen and water use efficiency of spring wheat. Arch Agron Soil Sci. 65(13):1913–1925.
  • Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. 2 ed. Cambridge (UK): Academic Press.
  • Smith SE, Smith FA, Jakobsen I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133:16–20.
  • Solaiman ZM, Yang HJ, Archdeacon D, Tippett O, Tibi M, Whiteley AS. 2019. Humus-rich compost increases lettuce growth, nutrient uptake, mycorrhizal colonisation, and soil fertility. Pedosphere. 29(2):170–179.
  • Soudzilovskaia NA, Douma JC, Akhmetzhanove AA, van Bodegom PM, Cornwell WK, Moens EJ, Treseder KK, Tibbett M, Wang YP, Cornelissen JHC. 2015. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecol Biogeo. 24(3):371–382.
  • Sukri MZ, Sari VK, Firgiyanto R 2018. Improving soil fertilizer through application of organic fertilizer humid acid and mikoriza in supporting growth and production of chilli plants in sand land. IOP Conf Ser, Bali, Indonesia: Earth Environ Sci. 207:012056.
  • Talbot J, Allison S, Treseder KK. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol. 22:955–963.
  • Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phyto. l(164):347–355.
  • Treseder KK, Holden SR. 2013. Fungal carbon sequestration. Science. 339:1528–1529.
  • Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionelle [Measurement of VA mycorrhization rate of a root system. Search for estimation methods with functional significance]. In: Gianinazzi-Pearson V, Gianinazzi S, editors. Physiological and genetical aspects of mycorrhizae (in French). Paris: INRA Press; p. 217–221.
  • Vierheilig H, Coughlan AP, Wyss U, Piche Y. 1998. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol. 64:5004–5007.
  • Xavier LJC, Germida JJ. 2003. Bacteria associated with glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem. 35:471–478.
  • Yusran Y, Volker R, Torsten M 2009. Effects of plant growth-promoting rhizobacteria and rhizobium on mycorrhizal development and growth of Paraserianthes falcataria (L.) Nielsen seedlings in two types of soils with contrasting levels of pH. Proceedings of the international plant nutrition colloquium XVI. UC Davis: Department of Plant Sciences, Sacramento, California, USA. https://escholarship.org/uc/item/22h2v2h7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.