171
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Mobilization of soil phosphorus and enhancement of canola yield and phosphorus uptake by Ceriporia lacerata HG2011

, , , &
Pages 1229-1238 | Received 27 Jun 2020, Accepted 18 Jan 2021, Published online: 25 Jan 2021

References

  • Avdalović J, Beškoski V, Gojgić-Cvijović G, Maija-Liisa M, Stojanovic M, Zildžović S, Vrvic M. 2015. Microbial solubilization of phosphorus from phosphate rock by iron-oxidizing Acidithiobacillus sp. B2. Miner Eng. 72:17–22. doi:https://doi.org/10.1016/j.mineng.2014.12.010.
  • Bi QF, Li KJ, Zheng BX, Liu XP, Li HZ, Jin BJ, Ding K, Yang XR, Lin XY, Zhu YG. 2020. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci Total Environ. 703:703. doi:https://doi.org/10.1016/j.scitotenv.2019.134977.
  • Chen DM, Huang JG, Yuan L. 2019. A new function of the biocontrol bacterium Lysobacter enzymogenes LE16 in the mineralization of soil organic phosphorus. Plant Soil 442(1–2):299–309. doi:https://doi.org/10.1007/s11104-019-04175-x
  • Cheng L, Bucciarelli B, Shen J, Allan D, Vance CP. 2011. Update on white lupin cluster root acclimation to phosphorus deficiency update on lupin cluster roots. Plant Physiol. 156(3):1025–1032. doi:https://doi.org/10.1104/pp.111.175174
  • Clarholm M, Skyllberg U, Rosling A. 2015. Organic acid induced release of nutrients from metal-stabilized soil organic matter-the unbutton model. Soil Biol Biochem. 84:168–176. doi:https://doi.org/10.1016/j.soilbio.2015.02.019.
  • Cordell D, Drangert JO, White S. 2009. The story of phosphorus: global food security and food for thought. Glob Environ Change 19(2):292–305. doi:https://doi.org/10.1016/j.gloenvcha.2008.10.009
  • Goldstein AH. 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S, editors. Phosphate in microorganisms: cellular and molecular biology. Washington (DC): ASM Press; p. 197–203.
  • Hanson LE, Howell CR. 2004. Elicitors of plant defense responses from biocontrol strain of Trichoderma virens. Phytopathology 94(2):171–176. doi:https://doi.org/10.1094/PHYTO.2004.94.2.171
  • Hilda R, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Bio Adv. 17(4–5):319–339.
  • Hughes JM, Rakovan J. 2002. The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). Rev Mineral Geochem. 48(1):1–12. doi:https://doi.org/10.2138/rmg.2002.48.1
  • Illmer P, Schinner F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem. 24(4):0–395. doi:https://doi.org/10.1016/0038-0717(92)90199-8
  • Jang Y, Choi HE, Lim YW, Lee JS, Kim JJ. 2012. The first report of Ceriporia lacerata (Phanerochaetaceae, Basidiomycota) in Korea. Mycotaxon. 119(1):397–403. doi:https://doi.org/10.5248/119.397
  • Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F. 2013. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J. 11(6):709–716. doi:https://doi.org/10.1111/pbi.12061
  • Karpagam T, Nagalakshmi PK. 2014. Isolation and characterization of phosphate solubilizing microbes from agricultural soil. Int J Curr Microbiol Appl Sci. 3(3):601–614.
  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Bio Sci. 1(1):48–58.
  • Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, Stutter M, Shand C, Lumsdon D, Cooper P, Wendler R, et al. 2018. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil 427(3):5–16. doi:https://doi.org/10.1007/s11104-017-3362-2
  • Mikanová O, Nováková J. 2002. Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rostlinna Vyroba. 48(9):397–400.
  • Ministry of Commerce of the People’s Republic of China. 2004. General administration of quality supervision and inspection. Beijing: China Standard Press; p. GB1536–2004.
  • Mohinder K, Sapna S, Atul M. 2011. Influence of phosphate solubilizing pseudomonas and bacillus strains on the growth of ashvagandha (Withania somnifera). Indian J Agric Res. 45(2):128–133.
  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 32(2):429–448. doi:https://doi.org/10.1016/j.biotechadv.2013.12.005
  • Nannipieri P, Giagnoni L, Landi L, Renella G. 2011. Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E, editors. Phosphorus in action. Berlin Heidelberg: Springer; p. 215–243.
  • Pansu M, Gautheyrou J. 2007. Handbook of soil analysis: mineralogical, organic and inorganic methods groenekennis. Heidelberg: Springer Science and Business Media.
  • Pereira SIA, Castro PML. 2014. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol Eng. 73:526–535. doi:https://doi.org/10.1016/j.ecoleng.2014.09.060.
  • Pingale SS, Virkar PS. 2017. Study of influence of phosphate dissolving micro-organisms on yield and phosphate uptake by crops. Cien Saude Colet. 19(9):3809–3818.
  • Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA. 2020. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457. doi:https://doi.org/10.1016/j.energy.2020.117457.
  • Saneoka H, Fujita K, Ogata S. 1989. Effect of phosphorus fertilizer on drought tolerance in warm season forage crops. Jpn J Grassl Sci. 35:116–126.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2(1):1–14. doi:https://doi.org/10.1186/2193-1801-2-587
  • Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Richardson AE. 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil. 349(1–2).
  • Sirén H. 2015. Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Data Brief. 5:194–202. doi:https://doi.org/10.1016/j.dib.2015.08.026.
  • Suhara H, Maekawa N, Kaneko S, Hattori T, Kondo R. 2003. A new species, ceriporia lacerata, isolated from white-rotted wood. Mycotaxon Ithaca Ny. 86(41):335–347.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1(4):301–307.
  • Tomoki W, Nobukazu S, Shiro S, Toshiaki U, Mikio S, Kazufumi Y, Takefumi H. 2010. Oxalate efflux transporter from the brown rot fungus fomitopsis palustris. Appl Environ Microbiol. 76(23):7683–7690.
  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomassc. Soil Biol Biochem. 19(6):703–707.
  • Viveros MO, Jorquera MA, Crowley DE, Gajardo G, Mora ML. 2010. Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. J Soil Sci Plant Nutr. 10:293–319.
  • Wakelin S, Warren R, Harvey P, Ryder M. 2004. Phosphate solubilization by Penicillium spp. Closely associated with wheat roots. Biol Fert Soils 40(1):36–43.
  • Wang J, Yao LY, Lu YH. 2013. Ceriporia lacerata DMC1106, a new endophytic fungus: isolation, identification, and optimal medium for 2ʹ,4ʹ-dihydroxy-6ʹ-methoxy-3ʹ,5ʹ-dimethylchalcone Production. Biotechnol Bioprocess Eng. 18(4):669–678.
  • Yin Z, Shi F, Jiang H, Roberts DP, Fan B. 2015. Phosphate solubilization and promotion of maize growth by Penicillium Oxalicum p4 and Aspergillus Niger p85 in a calcareous soil. Can J Microbiol. 61(12):1–11.
  • Zohara F, MAM A, NC P, Rahman M, Islam MT. 2016. Inhibitory effects of Pseudomonas spp. on plant pathogen Phytophthora capsici in vitro and in planta. Biocatal Agric Biotechnol. 5:69–77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.