164
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Nickel increases productivity, Ca accumulation and reduces blossom-end rot in tomato

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1543-1553 | Received 29 Sep 2020, Accepted 30 Mar 2021, Published online: 10 May 2021

References

  • Alves EW, Ferreira AT, Ferreira CT (1992) Effects of canotoxin on the Ca(2+)-ATPase of sarcoplasmitic reticulum membranes. Toxicon. 30: 1411–1418
  • Arruda SJ Jr, Bezerra Neto E, Barreto LP, Resende LV. 2011. Blossom-end rot and productivity of tomatoes as a function of calcium and ammonium contents. R Caatinga. 24:20–26.
  • Barcelos JPQ, Reis HPG, Godoy CV, Gratão PL, Furlani Junior E, Putti FF, Reis AR (2018) Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathol. 67: 1502– 1513.
  • Barsukova VS, Gamzikova OI. 1999. Effects of nickel surplus on the element content in wheat varieties contrasting in Ni resistance. Agrokhimiya. 1:80–85.
  • Crooke WM, Inkson RHE. 1955. The relationship between nickel toxicity and major nutrient supply. Plant Soil. 6(1):1–15. doi:10.1007/BF01393752.
  • De Freitas ST, Jiang CZ, Mitcham EJ. 2012. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins. J Plant Growth Regul. 31(2):221–234. doi:10.1007/s00344-011-9233-9.
  • De Freitas ST, McElrone AJ, Shackel KA, Mitcham EJ. 2014. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments. J Exp Bot. 65(1):235–247. doi:10.1093/jxb/ert364.
  • DeKock PC, Hall A, Boggie R, Inkson RHE. 1982. The effect of water stress and form of nitrogen on the incidence of blossom-end rot in tomatoes. J Sci Food Agric. 33(6):509–515. doi:10.1002/jsfa.2740330603.
  • DeKock PC, Hall A, Inkson RHE, Robertson RA. 1979. Blossom-end rot in tomatoes. J Sci Food Agric. 30(5):508–514. doi:10.1002/jsfa.2740300511.
  • Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P. 2015. Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci. 6:754. doi:10.3389/fpls.2015.00754.
  • Follmer C, Wassermann GE, Carlini CR. 2004. Separation of jack bean (Canavalia ensiformis) urease isoforms by immobilized metal affinity chromatography and characterization of insecticidal properties unrelated to ureolytic activity. Plant Sci. 167(2):241–246. doi:10.1016/j.plantsci.2004.03.019.
  • Fontes PCR. 2003. Podridão apical do tomate, queima dos bordos das folhas em alface e depressão amarga dos frutos em maçã: deficiência de Ca? Hortic Bras. 6(2):145. doi:10.1590/S0102-05362003000200003.
  • Freitas DS, Rodak BW, Reis AR, Reis FB, Carvalho TS, Schulze J, Carneiro MAC, Guilherme LRG. 2018. Hidden Nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front Plant Sci. 9:614. doi:10.3389/fpls.2018.00614.
  • Gabbrielli R, Pandolfini T. 1984. Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species. Physiol Plant. 30(4):540–544. doi:10.1111/j.1399-3054.1984.tb02796.x.
  • Ghasemi R, Chavoshi ZZ, Boyd RS, Rajakaruna N. 2014. A preliminary study of the role of nickel in enhancing flowering of the nickel hyperaccumulating plant Alyssum inflatum Nyár. (Brassicaceae). South African J Bot. 92:47–52. doi:10.1016/j.sajb.2014.01.015.
  • Gondim ARO, Prado RM, Cecílio Filho AB, Alves AU, Correia MAR. 2015. Boron foliar application in nutrition and yield of beet and tomato. J Plant Nutr. 38(10):1573–1579. doi:10.1080/01904167.2015.1043373.
  • Harish Sundaramoorthy S, Kumar D, Vaijapurkar SG, Vaijapurkar SG. 2008. A new chlorophycean nickel hyperaccumulator. Bioresour Technol. 99(9):3930–3934. doi:10.1016/j.biortech.2007.07.043.
  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Moller SI, White P. 2012. Functions of macronutrients. In: Marschner P, editor. Marschner’s mineral nutrition of higher plants. New York: Elsevier; p. 135–189.
  • Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann. Bot. 95:571–581
  • Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soils. Berkeley (CA): California Agricultural Experimental Station.
  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla‐Pareek SL. 2014. Glyoxalases and stress tolerance in plants. Biochem Soc Trans. 42(2):485–490. doi:10.1042/BST20130242.
  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP. 2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii, and Thlaspi goesingense. J Exp Bot. 52(365):2291–2300. doi:10.1093/jexbot/52.365.2291.
  • Kutman BY, Kutman UB, Cakman I. 2013. Foliar nickel application alleviates detrimental effects of glyphosate drift on yield and seed quality of wheat. J Agric Food Chem. 61(35):8364–8372. doi:10.1021/jf402194v.
  • Macedo FG, Bresolin JD, Santos EF, Furlan F, Silva WTL, Polacco JC, Lavres J. 2016. Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Front Plant Sci. 7:1358. doi:10.3389/fpls.2016.01358.
  • Macedo FG, Montanha GS, Carvalho HWP, Melo WJ. 2021. Nickel influences urease activity and calcium distribution in tomato fruits. ACS Agric Sci Technol. 1(1):29–34. doi:10.1021/acsagscitech.0c00003.
  • Malavolta E, Leão HC, Oliveira SC, Lavres J Jr, Moraes MF, Cabral CP, Malavolta M. 2006. Repartition of nutrients in citrus flowers, leaves and branches. R Bras Frutic. 28(3):506–511. doi:10.1590/S0100-29452006000300036.
  • Miller RO. 1998. Nitric-perchloric acid wet digestion in an open vessel. In: Karla YP, editor. Handbook of reference methods for plant analysis. Boca Raton (FL): CRC Press; p. 57–61.
  • Mohseni R, Ghaderian SM, Schat H. 2019. Nickel uptake mechanisms in two Iranian nickel hyperaccumulators, Odontarrhena bracteata and Odontarrhena inflata. Plant Soil. 434(1–2):263–269. doi:10.1007/s11104-018-3814-3.
  • Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL. 2014. A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J. 52(6):951–963. doi:10.1111/tpj.12521.
  • Nonami H, Fukuyama T, Yamamoto M (1995) Blossom-end rot of tomato plants may not be directly caused by calcium deficiency. Acta Hortic 396:107–114
  • Paiva HN, Carvalho JG, Siqueira JO. 2003. Effect of the increasing levels of nickel on the nutrients content and accumulation in ipê-roxo (Tabebuia impetiginosa (Mart.) Standley) seedlings. Sci For. 63:158–166.
  • Palacios G, Gomez J, Ccrbonell-Barrachuma A, Pedreno JN, Mataix J. 1998. Effect of nickel on concentration on tomato plant nutrition and dry matter yield. J Plant Nutr. 21(10):2179–2191. doi:10.1080/01904169809365553.
  • Petersen, KK, Willumsen, J. (1992). Effects of root zone warming and season on blossom-end rot and chemical composition of tomato fruit. Tidsskr. Planteavl. 96: 489–498
  • Raij B, Cantarella H, Quaggio JA, Furlani AMC. 1997. Recomendações de adubação e calagem para o Estado de São Paulo. 2nd ed. Campinas: Instituto Agronômico de Campinas (Boletim técnico, 100).
  • Roach WA, Barclay C. 1946. Nickel and multiple trace deficiencies in agricultural crops. Nature. 157(3995):696. doi:10.1038/157696a0.
  • SAS Institute. 1996. SAS/STAT. User’s guide, version 6.11. 4.ed. Cary. Stat Anal Syst Inst. 2:842.
  • Schwarz D, Thompson AJ, Kläring HP. 2014. Guidelines to use tomato in experiments with a controlled environment. Front Plant Sci. 5:625. doi:10.3389/fpls.2014.00625.
  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A. 2018. Nickel; whether toxic or essential for plants and environment - A review. Plant Physiol Biochem. 132:641–651. doi:10.1016/j.plaphy.2018.10.014.
  • Smith NG, Woodburn J. 1984. Nickel and ethylene involvement in the senescence of leaves and flowers. Naturwissenschaften. 71(4):210–211. doi:10.1007/BF00490435.
  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV. 2013. Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol. 10(5):1129–1140. doi:10.1007/s13762-013-0245-9.
  • Suzuki K, Shono M, Egawa Y. 2003. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Protoplasma. 222(3–4):149–156. doi:10.1007/s00709-003-0018-2.
  • Tiwari M, Sharma NC, Fleischmann P, Burbage J, Venkatachalam P, Sahi SV. 2017. Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Front Plant Sci. 8:633. doi:10.3389/fpls.2017.00633.
  • Williams M. 2015. “Plant Nutrition 3: Micronutrients and metals.” The Plant Cell vol. 27,5 (2015). doi:10.1105/tpc.115.tt0515.
  • Wissemeier AH, Zuhlke G. 2002. Relation between climatic variables, growth and the incidence of tipburn in field-grown lettuce as evaluated by simple, partial and multiple regression analysis. Sci Hortic. 93(3–4):193–204. doi:10.1016/S0304-4238(01)00339-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.