258
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Organic fertilizers reduce negative effect of drought in barely (C3) and millet (C4) under warmed climate conditions

, &
Pages 1810-1825 | Received 21 Nov 2020, Accepted 07 May 2021, Published online: 30 May 2021

References

  • AbdElgawad H, Farfan-Vignolo ER, De Vos D, Asard H. 2015. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Science. 231:1–10. doi:10.1016/j.plantsci.2014.11.001.
  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, Van Der Linden L. 2011. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol. 168(13):1550–1561. doi:10.1016/j.jplph.2011.02.011.
  • Abd El-Mageed TA, Semida WM. 2015. Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.). Agric Water Manage. 159:1–10. doi:10.1016/j.agwat.2015.05.020.
  • Alfonso SU, Brüggemann W. 2012. Photosynthetic responses of a C3 and three C4 species of the genus Panicum (s.l.) with different metabolic subtypes to drought stress. Photosynthesis Res. 112(3):175–191. doi:10.1007/s11120-012-9763-4.
  • Ainsworth EA, Long SP. 2021. 30 years of free‐air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Global Change Biol. 27(1):27–49. doi:10.1111/gcb.15375.
  • Aowad MM, Mohamed AA. 2009. The effect of bio, organic and mineral fertilization on productivity of sunflower seed and oil yields. J Agric Res. 35:1013–1028.
  • Bailly C, Benamar A, Corbineau F, Come D. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum. 97(1):104–110. doi:10.1111/j.1399-3054.1996.tb00485.x.
  • Begum N, Ahanger MA, Su Y, Lei Y, Mustafa NSA, Ahmad P, Zhang L. 2019. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants. 8(12):579. doi:10.3390/plants8120579.
  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254
  • Cui Q, Li Y, He X, Li S, Zhong X, Liu B, Zhang D, Li Q. 2019. Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings. Plant Physiol Biochem. 143:142–153. doi:10.1016/j.plaphy.2019.08.025.
  • Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Juozapaitienė G. 2019. Growth and photosynthetic responses in Brassica napus differ during stress and recovery periods when exposed to combined heat, drought and elevated CO2. Plant Physiol Biochem. 142:59–72. doi:10.1016/j.plaphy.2019.06.026.
  • Du Y, Zhao Q, Chen L, Yao X, Xie F. 2020. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy. 10(2):302. doi:10.3390/agronomy10020302.
  • El Sabagh A, Hossain A, Barutçular C, Gormus O, Ahmad Z, Hussain S, Islam MS, Alharby H, Bamagoos A, Kumar N. 2019. Effects of drought stress on the quality of major oilseed crops: implications and possible mitigation strategies – a Review. Appl Ecol Environ Res. 17(2):4019–4043. doi:10.15666/aeer/1702_40194043.
  • Esmaeilian Y, Sirousmehr AR, Asghripour MR, Amiri E. 2012. Comparison of sole and combined nutrient application on yield and biochemical composition of sunflower under water stress. Int J App. 2:214–220.
  • Farooq F, Bukhari B, Akram NA, Ashraf A, Wijaya W, Alyemeni A, Ahmad A. 2020. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants. 9(1):104. doi:10.3390/plants9010104.
  • Gholami H, Ghani A, Fard FR, Saharkhiz MJ, Hazrati H. 2019. Changes in photosynthetic pigments and uptake of some soil elements by chicory supplied with organic fertilizers. Acta Ecologica Sinica. 39(3):250–256. doi:10.1016/j.chnaes.2018.09.003.
  • Gunes A, Pilbeam DJ, Inal A, Coban S. 2008. Influence of silicon on sunflower cultivars under drought stress, I: growth, Antioxidant Mechanisms, and Lipid Peroxidation. Comm Soil Sci Plant Anal. 39(13–14):1885–1903. doi:10.1080/00103620802134651.
  • Guo R, Shi LX, Jiao Y, Li MX, Zhong XL, Gu FX, Liu Q, Xia X, Li HR. 2018. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants. 10(2):016. doi:10.1093/aobpla/ply016.
  • Habibi G. 2012. Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol Szeged. 56:57–63.
  • Hasanuzzaman M, Bhuyan MHM, Nahar K, Hossain M, Mahmud JA, Hossen M, Fujita M. 2018. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy. 8(3):31. https://doi.org/10.3390/agronomy8030031
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: i. Arch Biochem Biophys. 125(1):189–198. doi:10.1016/0003-9861(68)90654-1.
  • Hirich A, Choukr-Allah R, Jacobsen S-E. 2014. Deficit irrigation and organic compost improve growth and yield of Quinoa and Pea. J Agron Crop Sci. 200(5):390–398. doi:10.1111/jac.12073.
  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A. 2018. Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manage. 201:152–166. doi:10.1016/j.agwat.2018.01.028.
  • IPCC 2014. Summary for Policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, et al (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp 1–30
  • Jan S, Abbas N, Ashraf M, Ahmad P. 2019. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma. 256(2):313–329.
  • Januškaitienė I, Kacienė G. 2017. The effect of foliar spray fertilizers on the tolerance of Hordeum vulgare to UV-B radiation and drought stress. Cereal Res Comm. 45(3):390–400.
  • Januškaitienė I, Žaltauskaitė J, Dikšaitytė A, Sujetovienė G, Miškelytė D, Kacienė G, Juknys R. 2018. Interspecific competition changes photosynthetic and oxidative stress response of barley and barnyard grass to elevated CO2 and temperature. Agric Food Sci. 27:50–62.
  • Jiménez S, Fattahi M, Bedis K, Nasrolahpour-moghadam S, Irigoyen JJ, Gogorcena Y. 2020. Interactional effects of climate change factors on the water status, photosynthetic rate, and metabolic regulation in peach. Front Plant Sci. 11:43.
  • Kaya C, Ashraf M, Wijaya L, Ahmad P. 2019. The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiol Biochem. 143:119–128.
  • Kaya C, Şenbayram M, Akram NA, Ashraf M, Alyemeni MN, Ahmad P. 2020. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports. 10(1):1–13.
  • Kirkham MB. 2011. Elevated Carbon Dioxide: impacts on Soil and Plant Water Relations. CRC Press. doi:10.1201/b10812
  • Kizildeniz T, Mekni I, Santesteban H, Pascual I, Morales F, Irigoyen JJ. 2015. Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric. Water Manage. 159:155–164. doi:10.1016/j.agwat.2015.06.015
  • Lan J. 1998. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric Boreali-occidentalis Sinica. 7:85–87.
  • Li QM, Liu BB, Wu Y, Zou ZR. 2008. Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. J Integr Plant Biol. 50(10):1307–1317. https://doi.org/10.1111/j.1744-7909.2008.00686.x
  • Lin ZH, Chen LS, Chen RB, Zhang FZ, Jiang HX, Tang N. 2009. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol. 9:43.
  • Liu X, Zhang H, Wang J, Wu X, Ma S, Xu Z, Zhou T, Xu N, Tang X, An B. 2019. Increased CO2 concentrations increasing water use efficiency and improvement PSII function of mulberry seedling leaves under drought stress. J Plant Interactions. 14:213–223.
  • Martínez-Alcántara B, Martínez-Cuenca MR, Bermejo A, Legaz F, Quinones A. 2016. Liquid organic fertilizers for sustainable agriculture: nutrient uptake of organic versus mineral fertilizers in citrus trees. PloS One. 11(10):e0161619.
  • Medina S, Vicente R, Amador A, Araus JL. 2016. Interactive effects of elevated [CO2] and water stress on physiological traits and gene expression during vegetative growth in four durum wheat genotypes. Front Plant Sci. 7: 1738. https://doi.org/10.3389/fpls.2016.01738
  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L. 2019. Research progress and perspective on drought stress in legumes: A review. Int J Mol Sci. 20(10):2541. https://doi.org/10.3390/ijms20102541
  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ. 2015. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Safety. 113:191–200.
  • Nematpour A, Eshghizadeh HR, Abraheh M. 2019. Interactive effects of CO2 and nitrogen supply on growth and physiological traits of millet cultivars under drought stress. Arch Agron Soil Sci. doi:10.1080/03650340.2019.1631450
  • NOAA 2021. National Oceanic and Atmospheric Administration. Visited 2021 Mar 1. http://CO2now.org/Current-CO2/CO2-Now/noaa-mauna-loa-CO2-data.htmlhttps://www.co2.earth/monthly-co2
  • Pieters AJ, Souki SE. 2005. Effects of drought during grain filling on PSII activity in rice. J Plant Physiol. 62:903–911.
  • Poorter H, Navas M. 2003. Plant growth and competition at elevated CO2: on winners: losers and functional groups. New Phytol. 157:175–198.
  • Rabert GA, Manivannan P, Somasundaram R, Panneerselvam R. 2014. Triazole compounds alters the antioxidant and osmoprotectant status in drought stressed Helianthus annuus L. Plants. Emir J Food Agri 26:265.
  • Rasineni GK, Guha A, Reddy AR. 2011. Elevated atmospheric CO2 mitigated photoinhibition in a tropical tree species, Gmelina arborea. J Photochemistry and Photobiology B: Biology. 103:159–165.
  • Salazar‐Parra C, Aguirreolea J, Sánchez‐Díaz M, Irigoyen JJ, Morales F. 2012. Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes’ response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plantarum. 144:99–110.
  • Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez A, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F. 2015. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol. 174:97–109.
  • Santos EF, Macedo FG, Bj Z, Lima GPP, Lavres J. 2017. Prognosis of physiological disorders in physic nut to N, P, and K deficiency during initial growth. Plant Physiol Biochem. 115:249–258.
  • Sekhar KM, Kota VR, Reddy TP, Rao KV, Reddy AR. 2020. Amelioration of plant responses to drought under elevated CO2 by rejuvenating photosynthesis and nitrogen use efficiency: implications for future climate-resilient crops. Photosynthesis Res. https://doi.org/10.1007/s11120-020-00772-5
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants.10(2):259. https://doi.org/10.3390/plants10020259
  • Shehzad MA, Maqsood M, Nawaz F, Abbas T, Yasin S. 2018. Boron-induced improvement in physiological, biochemical and growth attributes in sunflower (Helianthus annuus L.) exposed to terminal drought stress. J Plant Nutr. 41:943–955.
  • Tavanti TR, de Melo AAR, Moreira LDK, Sanchez DEJ, dos Santos Silva R, da Silva RM, Dos Reis AR. 2021. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiol Biochem. 160:386–396. https://doi.org/10.1016/j.plaphy.2021.01.040
  • Ullah A, Romdhane L, Rehman A, Farooq M. 2019. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiol Biochem. 143:11–18.
  • Van Der Kooi CJ, Reich M, Löw M, De Kok LJ, Tausz M. 2016. Growth and yield stimulation under elevated CO2 and drought: a meta-analysis on crops. Environ Exp Bot. 122:150–157.
  • Vandegeer R, Miller RE, Bain M, Gleadow RM, Cavagnaro TR. 2013. Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz). Funct Plant Biol. 40:195–200.
  • Von Wettstein D. 1957. Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp Cell Res. 12(3):427–506.
  • Wada S, Takagi D, Miyake C, Makino A, Suzuki Y. 2019. Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, P700, under drought and high temperatures in rice. Int J Mol Sci. 20:2068.
  • Whitfield S, Chapman S, Mahop MT, Deva C, Masamba K, Mwamahonje A. 2021. Exploring assumptions in crop breeding for climate resilience: opportunities and principles for integrating climate model projections. Climatic Change. 164(3):1–18.
  • Wu F, Zhang G, Dominy P. 2003. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot. 50:67–78.
  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 162:2–12. doi:10.1111/ppl.12540

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.