612
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phosphorus fractions in biochar-amended soil — chemical sequential fractionation, 31P NMR, and phosphatase activity

, , , , , , & show all
Pages 169-181 | Received 29 Nov 2020, Accepted 09 Aug 2021, Published online: 17 Aug 2021

References

  • Adhikari S, Gasco G, Mendez A, Surapaneni A, Jegatheesan V, Shah K, Paz - Ferreiro J. 2019. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci Total Environ. 695:133846. doi:10.1016/j.scitotenv.2019.133846.
  • Ahlgren J, De Brabandere H, Reitzel K, Rydin E, Gogoll A, Waldeback M. 2007. Sediment phosphorus extractants for phosphorus - 31 nuclear magnetic resonance analysis: a quantitative evaluation. J Environ Qual. 36(3):892–898. doi:10.2134/jeq2006.0235.
  • Antunes E, Schumann J, Brodie G, Jacob MV, Schneider PA. 2017. Biochar produced from biosolids using a single - mode microwave: characterisation and its potential for phosphorus removal. J Environ Manage. 196:119–126. doi:10.1016/j.jenvman.2017.02.080.
  • Biederman LA, Harpole WS. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta - analysis. GCB Bioenergy 5(2):202–214. doi:10.1111/gcbb.12037.
  • Borges BMMN, Strauss M, Camelo PA, Sohi SP, Franco HCJ. 2020. Re-use of sugarcane residue as a novel biochar fertiliser - Increased phosphorus use efficiency and plant yield. J Clean Prod. 262:121406. doi:10.1016/j.jclepro.2020.121406.
  • Bornø ML, Eduah JO, Müller - Stöver DS, Liu FL. 2018. Effect of different biochars on phosphorus (P) dynamics in the rhizosphere of Zea mays L. (maize). Plant Soil 431(1–2):257–272. doi:10.1007/s11104-018-3762-y.
  • Bowman RA, Cole CV. 1978. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci. 125(2):95–101. doi:10.1097/00010694-197802000-00006.
  • Colvan SR, Syers JK, O’Donnell AG. 2001. Effect of long - term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biol Fertil Soils 34(4):258–263. doi:10.1007/s003740100411.
  • Cordell D, Drangert JO, White S. 2009. The story of phosphorus: global food security and food for thought. Global Environ Chang. 19(2):292–305. doi:10.1016/j.gloenvcha.2008.10.009.
  • Cordell D, White S. 2014. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu Rev Env Resour. 39(1):161–188. doi:10.1146/annurev-environ-010213-113300.
  • Eriksson AK, Gustafsson JP, Hesterberg D. 2015. Phosphorus speciation of clay fractions from long - term fertility experiments in Sweden. Geoderma 241:68–74. doi:10.1016/j.geoderma.2014.10.023.
  • Gao S, DeLuca TH, Cleveland CC. 2019. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta - analysis. Sci Total Environ. 654:463–472. doi:10.1016/j.scitotenv.2018.11.124.
  • Hong C, Lu SG. 2018. Does biochar affect the availability and chemical fractionation of phosphate in soils? Environ Sci and Pollut R Int. 25(9):8725–8734. doi:10.1007/s11356-018-1219-8.
  • Jiang BF, Gu YC. 1989. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Sci Agric Sin. 22:58–62.
  • Jin Y, Liang XQ, He MM, Liu Y, Tian GM, Shi JY. 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere 142:128–135. doi:10.1016/j.chemosphere.2015.07.015.
  • Lehmann J. 2015. Biochar for environmental management: science, technology and implementation. Science and Technology: Earthscan. 25(1):15801–15811.
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota – a review. Soil Biol Biochem. 43(9):1812–1836.
  • Li BL, Bicknell KB, Renwick A. 2019a. Peak phosphorus, demand trends and implications for the sustainable management of phosphorus in China. Resour Conser Recy. 146:316–328. doi:10.1016/j.resconrec.2019.03.033.
  • Li FY, Liang XQ, Niyungeko C, Sun T, Liu F, Arai Y. 2019b. Effects of biochar amendments on soil phosphorus transformation in agricultural soils. Adv Agron. 158:131–172.
  • Liu J, Sui P, Cade BRBRAMN, Hu YF, Yang JJ, Huang SM, Ma YB. 2019. Molecular - level understanding of phosphorus transformation with long - term phosphorus addition and depletion in an alkaline soil. Geoderma 353:116–124. doi:10.1016/j.geoderma.2019.06.024.
  • Liu SN, Meng J, Jiang LL, Yang X, Lan Y, Cheng XY, Chen WF. 2017. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl Soil Ecol. 116:12–22. doi:10.1016/j.apsoil.2017.03.020.
  • Manolikaki II, Mangolis A, Diamadopoulos E. 2016. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. J Environ Manag. 181:536–543. doi:10.1016/j.jenvman.2016.07.012.
  • Matin NH, Jalali M, Antoniadis V, Shaheen SM, Wang JX, Zhang T, Wang HL, Rinklebe J. 2020. Almond and walnut shell - derived biochars affect sorption - desorption, fractionation, and release of phosphorus in two different soils. Chemosphere 241:124888. doi:10.1016/j.chemosphere.2019.124888.
  • Mcdowell RW, Stewart I. 2006. The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and 31P NMR. Geoderma 130(1–2):176–189. doi:10.1016/j.geoderma.2005.01.020.
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27:678–681. doi:10.1016/S0003-2670(00)88444-5.
  • Parkinson JA, Allen SE. 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Scie Plan. 6(1):1–11. doi:10.1080/00103627509366539.
  • Paz-ferreiro J, Gascó G, Gutiérrez B, Méndez A. 2012. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol Fertil Soils 48(5):511–517. doi:10.1007/s00374-011-0644-3.
  • Qian TT, Zhang XS, Hu JY, Jiang H. 2013. Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere 93(9):2069–2075. doi:10.1016/j.chemosphere.2013.07.041.
  • Sarfraz R, Yang WH, Wang SS, Zhou BQ, Xing SH. 2020. Short term effects of biochar with different particle sizes on phosphorous availability and microbial communities. Chemosphere 256:126862. doi:10.1016/j.chemosphere.2020.126862.
  • Schneider F, Haderlein SB. 2016. Potential effects of biochar on the availability of phosphorus - mechanistic insights. Geoderma 277:83–90. doi:10.1016/j.geoderma.2016.05.007.
  • Schoumans OF, Chardon WJ. 2015. Phosphate saturation degree and accumulation of phosphate in various soil types in the Netherlands. Geoderma 237:325–335. doi:10.1016/j.geoderma.2014.08.015.
  • Shen Q, Hedley M, Arbestain MC, Kirschbaum MUF. 2016. Can biochar increase the bioavailability of phosphorus? J Soil Sci Plant Nut. 16(2):268–286.
  • Steffens D, Leppin T, Luschin - Ebengreuth N, Yang ZM, Schubert S. 2010. Organic soil phosphorus considerably contributes to plant nutrition but is neglected by routine soil - testing methods. J Plant Nutr Soil Sci. 173(5):765–771. doi:10.1002/jpln.201000079.
  • Sun DQ, Hale L, Kar G, Soolanayakanahally R, Adl S. 2018a. Phosphorus recovery and reuse by pyrolysis: applications for agriculture and environment. Chemosphere 194:682–691. doi:10.1016/j.chemosphere.2017.12.035.
  • Sun K, Qiu MY, Han LF, Jin J, Wang ZY, Pan ZZ, Xing BS. 2018b. Speciation of phosphorus in plant - and manure - derived biochars and its dissolution under various aqueous conditions. Sci Total Environ. 634:1300–1307. doi:10.1016/j.scitotenv.2018.04.099.
  • Tabatabai MA. 1994. Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A, editors. Methods of soil analysis. Part 2: microbiological and biochemical properties. Madison: SSSA book Ser 5, SSSA, Inc; p. 775–833.
  • Turner BL, Mahieu N, Condron LM. 2003. Phosphorus - 31 nuclear magnetic resonance spectral assignments of phosphorus compounds in Soil NaOH – EDTA extracts. Soil Sci Soc Am J. 67(2):497–510. doi:10.2136/sssaj2003.4970.
  • Uchimiya M, Hiradate S. 2014. Pyrolysis temperature - dependent changes in dissolved phosphorus speciation of plant and manure biochars. J Agr Food Chem. 62(8):1802–1809. doi:10.1021/jf4053385.
  • Vincent AG, Turner BL, Tanner EVJ. 2010. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur J Soil Sci. 61(1):48–57. doi:10.1111/j.1365-2389.2009.01200.x.
  • Xu G, Zhang Y, Shao HB, Sun JN. 2016. Pyrolysis temperature affects phosphorus transformation in biochar: chemical fractionation and (31)P NMR analysis. Sci Total Environ. 569:65–72. doi:10.1016/j.scitotenv.2016.06.081.
  • Xu M, Gao P, Yang ZJ, Su LL, Wu J, Yang G, Zhang XH, Ma J, Peng H, Xiao YL. 2019. Biochar impacts on phosphorus cycling in rice ecosystem. Chemosphere 225:311–319. doi:10.1016/j.chemosphere.2019.03.069.
  • Yoo G, Kang H. 2012. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short - term laboratory experiment. J Environ Qual. 41(4):1193–1202. doi:10.2134/jeq2011.0157.
  • Zhang AM, Chen ZH, Zhang GN, Chen LJ, Wu ZJ. 2012. Soil phosphorus composition determined by 31P NMR spectroscopy and relative phosphatase activities influenced by land use. Eur J Soil Biol. 52:73–77. doi:10.1016/j.ejsobi.2012.07.001.
  • Zhang HZ, Chen CR, Gray EM, Boyd SE, Yang H, Zhang DK. 2016. Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma 276:1–6. doi:10.1016/j.geoderma.2016.04.020.
  • Zhang LY, Xiang YZ, Jing YM, Zhang RD. 2019. Biochar amendment effects on the activities of soil carbon, nitrogen, and phosphorus hydrolytic enzymes: a meta - analysis. Environ Sci Pollut R. 26(22):22990–23001. doi:10.1007/s11356-019-05604-1.
  • Zhang QQ, Song YF, Wu Z, Yan XY, Gunina A, Kuzyakov Y, Xiong ZQ. 2020. Effects of six - year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice - wheat rotation. J Clean Prod. 242:118435. doi:10.1016/j.jclepro.2019.118435.
  • Zheng H, Wang ZY, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing BS. 2013. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technol. 130:463–471. doi:10.1016/j.biortech.2012.12.044.
  • Zhu J, Qu B, Li M. 2017. Phosphorus mobilization in the Yeyahu Wetland: phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils. Int Biodeter Biodegr. 124:304–313. doi:10.1016/j.ibiod.2017.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.