284
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical fertilizer reduction combined with organic materials enhances nematode community structure stability

, , , , , & ORCID Icon show all
Pages 399-416 | Received 15 Jan 2021, Accepted 29 Oct 2021, Published online: 08 Nov 2021

References

  • Allan-Perkins E, Manter DK, Wick R, Ebdon S, Jung GH. 2017. Nematode communities on putting greens, fairways, and roughs of organic and conventional cool-season golf courses. Appl Soil Ecol. 121:161–171. doi:10.1016/j.apsoil.2017.09.014
  • Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26:32–46. doi:10.1111/j.1442-9993.2001.tb00081.x.
  • Ansari KGMT, Pattnaik AK, Rastogi G, Bhadury P. 2018. Characterization of benthic habitat settings in a lagoonal ecosystem using free-living nematodes as proxy. Wetl Ecol Manage. 26(2):1–20. doi:10.1007/s11273-017-9564-9.
  • Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. 2016. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 97:188–198. doi:10.1016/j.soilbio.2016.03.017.
  • Banerjee S, Schlaeppi K, van der Heijden MGA. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 16(9):567–576. doi:10.1038/s41579-018-0024-1.
  • Bei SK, Zhang YL, Li TT, Christie P, Li XL, Zhang JL. 2018. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agr Ecosyst Environ. 260:58–69. doi:10.1016/j.agee.2018.03.014.
  • Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic, a flexible trimmer for Illumina sequence data. Bioinf (Oxford, Eng). 30(15):2114–2120. doi:10.1093/bioinformatics/btu170.
  • Bongers T, Bongers M. 1998. Functional diversity of nematodes. Appl Soil Ecol. 10(3):239–251. doi:10.1016/S0929-1393(98)00123-1.
  • Bongers T, Ferris H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol. 14(6):224–228. doi:10.1016/S0169-5347(98)01583-3.
  • Bongiorno G, Bodenhausen N, Bunemann EK, Brussaard L, Geisen S, Mader P, Quist CW, Walser JC, de Goede RGM. 2019. Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long-term field experiments. Mol Ecol. 28(22):4987–5005. doi:10.1111/mec.15270.
  • Brennan RJB, Glaze-corcoran S, Wick R, Hashemi M. 2020. Biofumigation: an alternative strategy for the control of plant parasitic nematodes. J Integr Agr. 19(7):1680–1690. doi:10.1016/S2095-3119(19)62817-0.
  • de Araujo ASF, Miranda ARL, Sousa RS, Mendes LW, Antunes JEL, De Souza Oliveira LM, de Araujo FF, Melo VMM, do Vale Barreto Figueiredo M. 2019. Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Appl Soil Ecol. 143:26–34. doi:10.1016/j.apsoil.2019.05.019
  • Dixon P. 2003. VEGAN, a package of R functions for community ecology. J Veg Sci. 14(6):927–930. doi:10.1111/j.1654-1103.2003.tb02228.x.
  • Djigal D, Brauman A, Diop TA, Chotte JL, Villenave C. 2004. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biol Biochem. 36(2):323–331. doi:10.1016/j.soilbio.2003.10.007.
  • Du XF, Li YB, Han X, Ahmad W, Li Q. 2020. Using high-throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Appl Soil Ecol. 152:103562. doi:10.1016/j.apsoil.2020.103562
  • Edgar RC. 2013. UPARSE, highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 10(10):996–998. doi:10.1038/nmeth.2604.
  • Fan FL, Yu B, Wang B, George TS, Yin HQ, Xu DY, Li DC, Song AL. 2019. Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories. Soil Biol Biochem. 135:213–221. doi:10.1016/j.soilbio.2019.05.001
  • Fanning JP, Reeves KL, Forknall CR, McKay A, Hollaway G. 2020. Pratylenchus thornei: the relationship between presowing nematode density and yield loss in wheat and barley. Phytopathology 110(3):674–683. doi:10.1094/PHYTO-08-19-0320-R.
  • Gong X, Chen XY, Geisen S, Zhang JR, Zhu HM, Hu F, Liu MQ. 2021. Agricultural habitats are dominated by rapidly evolving nematodes revealed through phylogenetic comparative methods. Soil Biol Biochem. 155:108183. doi:10.1016/j.soilbio.2021.108183
  • Gruzdeva LI, Matveeva EM, Kovalenko TE. 2007. Changes in soil nematode communities under the impact of fertilizers. Eurasian Soil Sci. 40(6):681–693. doi:10.1134/S1064229307060105.
  • Gu YF, Zhang T, Che H, Lu XX, Du YQ. 2015. Influence of returning corn straw to soil on soil nematode communities in winter wheat. Acta Ecol Sin. 35(2):52–56. doi:10.1016/j.chnaes.2014.07.002.
  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9(5):1177–1194. doi:10.1038/ismej.2014.210.
  • Hu C, Qi YC. 2010. Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field. Eur J Soil Biol. 46(3–4):230–236. doi:10.1016/j.ejsobi.2010.04.002.
  • Hu XJ, Liu JJ, Wei D, Zhu P, Cui XA, Zhou BK, Chen XL, Jin J, Liu XB, Wang GH. 2018. Soil bacterial communities under different long-term fertilization regimes in three locations across the black soil region of northeast China. Pedosphere 28(5):751–763. doi:10.1016/S1002-0160(18)60040-2.
  • Huang RL, Zhang ZY, Xiao X, Zhang N, Wang XY, Yang ZP, Xu KQ, Liang YT. 2019. Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils. Sci Total Environ. 692:333–343. doi:10.1016/j.scitotenv.2019.07.262
  • Kerfahi D, Tripathi BM, Porazinska DL, Park J, Go R, Adams JM. 2016. Do tropical rain forest soils have greater nematode diversity than High Arctic tundra? A metagenetic comparison of Malaysia and Svalbard. Global Ecol Biogeogr. 25(6):716–728. doi:10.1111/geb.12448.
  • Li J, Shi Y, Luo J, Zaman M, Houlbrooke D, Ding W, Ledgard S, Ghani A. 2014. Use of nitrogen process inhibitors for reducing gaseous nitrogen losses from land-applied farm effluents. Biol Fertil Soils 50(1):133–145. doi:10.1007/s00374-013-0842-2.
  • Li JM, Wang DC, Fan W, He RC, Yao YY, Sun L, Zhao XY, Wu JG. 2018. Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil. Appl Soil Ecol. 125:12–17. doi:10.1016/j.apsoil.2017.12.013
  • Li Q, Jiang Y, Liang WJ, Lou YL, Zhang EP, Liang CH. 2010. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Appl Soil Ecol. 46(1):111–118. doi:10.1016/j.apsoil.2010.06.016.
  • Li WT, Liu M, Wu M, Jiang CY, Kuzyakov Y, Gavrichkova O, Feng YZ, Dong YH, Li ZP. 2019a. Bacterial community succession in paddy soil depending on rice fertilization. Appl Soil Ecol. 144:92–97. doi:10.1016/j.apsoil.2019.07.014
  • Li ZQ, Li DD, Ma L, Yu YY, Zhao BZ, Zhang JB. 2019b. Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. J Soil Sediment 19(2):618–628. doi:10.1007/s11368-018-2102-4.
  • Liu JS, Ma Q, Hui XL, Ran JY, Ma QX, Wang XS, Wang ZH. 2020. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency. Soil Biol Biochem. 149:107918. doi:10.1016/j.soilbio.2020.107918
  • Liu T, Chen XY, Hu F, Ran W, Shen QR, Li HX, Whalen JK. 2016. Carbon-rich organic fertilizers to increase soil biodiversity: evidence from a meta-analysis of nematode communities. Agr Ecosyst Environ. 232:199–207. doi:10.1016/j.agee.2016.07.015
  • Magoč T, Salzberg SL. 2011. FLASH, fast length adjustment of short reads to improve genome assemblies. Bioinf (Oxford, Eng). 27(21):2957–2963. doi:10.1093/bioinformatics/btr507.
  • Major J, Lehmann J, Rondon M, Goodale C. 2009. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biol. 16(4):1366–1379. doi:10.1111/j.1365-2486.2009.02044.x.
  • Merloti LF, Mendes LW, Pedrinho A, De Souza LF, Ferrari BM, Tsai SM. 2019. Forest-to-agriculture conversion in Amazon drives soil microbial communities and N-cycle. Soil Biol Biochem. 137:107567. doi:10.1016/j.soilbio.2019.107567
  • Moroenyane I, Dong K, Singh D, Chimphango SBM, Adams JM. 2016. Deterministic processes dominate nematode community structure in the Fynbos Mediterranean heathland of South Africa. Evol Ecol. 30(4):685–701. doi:10.1007/s10682-016-9837-4.
  • Neher DA. 1999. Nematode communities in organically and conventionally managed agricultural soils. J Nematol. 31(2):142–154.
  • Neher DA. 2001. Role of nematodes in soil health and their use as indicators. J Nematol. 33(4):161–168.
  • Pan FJ, Mclaughlin NB, Yu Q, Xue AG, Xu YL, Han XZ, Li CJ, Zhao D. 2010. Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybeane-wheat-corn rotation. Eur J Soil Biol. 46(2):105–111. doi:10.1016/j.ejsobi.2010.01.004.
  • Pokharel R, Marahatta SP, Handoo ZA, Chitwood DJ. 2015. Nematode community structures in different deciduous tree fruits and grape in Colorado, USA and impact of organic peach and apple production practices. Eur J Soil Biol. 67:59–68. doi:10.1016/j.ejsobi.2015.02.003
  • Porazinska DL, Giblin-Davis RM, Powers TO, Thomas WK, Neufeld J. 2012. Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS One 7(9):e44641. doi:10.1371/journal.pone.0044641.
  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. 2009. Introducing mothur, open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 75(23):7537–7541. doi:10.1128/AEM.01541-09.
  • Singh BP, Cowie AL. 2014. Long-term influence of biochar on native organic carbon mineralization in a low-carbon clayey soil. Sci Rep-UK. 4(1):3687. doi:10.1038/srep03687.
  • Song ZW, Zhang B, Tian YL, Deng AX, Zhang CY, Islam MN, Mannaf MA, Zhang WJ. 2014. Impacts of nighttime warming on the soil nematode community in a winter wheat field of Yangtze Delta Plain, China. J Integr Agr. 13(7):1477–1485. doi:10.1016/S2095-3119(14)60807-8.
  • Strickland MS, Rousk J. 2010. Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications. Soil Biol Biochem. 42(9):1385–1395. doi:10.1016/j.soilbio.2010.05.007.
  • Su LX, Bai TY, Qin XW, Yu H, Wu G, Zhao QY, Tan LH. 2021. Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. App Soil Ecol. 166:103994. doi:10.1016/j.apsoil.2021.103994
  • Sun RB, Dsouza M, Gilbert JA, Guo XS, Wang DZ, Guo ZB, Ni YY, Chu HY. 2016. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ Microbiol. 18(12):5137–5150. doi:10.1111/1462-2920.13512.
  • van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, De Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572(7768):194–198. doi:10.1038/s41586-019-1418-6.
  • Wang JC, Zhang L, Lu Q, Raza W, Huang QW, Shen QR. 2014. Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes. Appl Soil Ecol. 84:38–44. doi:10.1016/j.apsoil.2014.06.009
  • Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 73(16):5261–5267. doi:10.1128/AEM.00062-07.
  • Xiao HF, Li G, Li DM, Hu F, Li HX. 2014. Effect of different bacterial-feeding nematode species on soil bacterial numbers, activity, and community composition. Pedosphere 24(1):116–124. doi:10.1016/S1002-0160(13)60086-7.
  • Xin XL, Zhang JB, Zhu AN, Zhang CZ. 2016. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Till Res. 156:166–172. doi:10.1016/j.still.2015.10.012
  • Yang HJ, Ma JX, Rong ZY, Zeng DD, Wang YC, Hu SJ, Ye WW, Zheng XB. 2019. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat-soybean rotation system. Front Microbiol. 10:1811. doi:10.3389/fmicb.2019.01811
  • Yang LQ, Zhang XJ, Ju XT. 2017. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Sci Rep-UK. 7(1):43283. doi:10.1038/srep43283.
  • Yeates GW. 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biol Fertil Soils 37(4):199–210. doi:10.1007/s00374-003-0586-5.
  • Zhang SX, Cui SY, McLaughlin NB, Liu P, Hu N, Liang WJ, Wu DH, Liang AZ. 2019. Tillage effects outweigh seasonal effects on soil nematode community structure. Soil Till Res. 192:233–239. doi:10.1016/j.still.2019.05.017
  • Zhang ZY, Zhang XK, Mahamood M, Zhang SQ, Huang SM, Liang WJ. 2016. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Sci Rep-UK. 6(1):31118. doi:10.1038/srep31118.
  • Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen BA, Shen QR, Zhang RF, Smidt H. 2014a. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and crop types. PLoS One 9(1):e85301. doi:10.1371/journal.pone.0085301.
  • Zhao J, Zhang W, Wang KL, Song TQ, Du H. 2014b. Responses of the soil nematode community to management of hybrid napiergrass: the trade-off between positive and negative effects. Appl Soil Ecol. 75:134–144. doi:10.1016/j.apsoil.2013.10.011
  • Zhao SC, Qiu SJ, Xu XP, Ciampitti IA, Zhang SQ, He P. 2019a. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl Soil Ecol. 138:123–133. doi:10.1016/j.apsoil.2019.02.018
  • Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, Wei WX, Fang YT, Li PP, Zhang LM. 2019b. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 7(1):33. doi:10.1186/s40168-019-0647-0.
  • Zheng F, Zhu D, Giles M, Daniell T, Neilson R, Zhu YG, Yang XR. 2019. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Sci Total Environ. 680:70–78. doi:10.1016/j.scitotenv.2019.04.384
  • Zhou JH, Huang RX, Cheng SH, Tang JJ, Fan HB. 2018. Effects of bacterial-feeding nematodes and organic matter on microbial activity and oil degradation in contaminated soil. Environ Sci Pollut Res. 25(35):35614–35622. doi:10.1007/s11356-018-3460-6.
  • Zhou JZ, Deng Y, Luo F, He ZL, Yang YF. 2011. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBIO. 2(4):e00122–11. doi:10.1128/mBio.00122-11.
  • Zhu J, Peng H, Ji XH, Li CJ, Li SN. 2019. Effects of reduced inorganic fertilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils. Eur J Soil Biol. 94:103116. doi:10.1016/j.ejsobi.2019.103116

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.