345
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Trade-off between soil aggregate stability and carbon decomposition under 44 years long-term integrated nutrient management in rice-wheat-jute system

, , , , , , , , , , & show all
Pages 417-430 | Received 08 Apr 2021, Accepted 01 Nov 2021, Published online: 18 Nov 2021

References

  • Abiven S, Menasseri S, Chenu C. 2009. The effects of organic inputs over time on soil aggregate stability-A literature analysis. Soil Biol Biochem. 41(1):1–12. doi:10.1016/j.soilbio.2008.09.015.
  • Abrar MM, Xu M, Shah SAA, Aslam MW, Aziz T, Mustafa A, Ashraf MN, Zhou B, Ma X. 2020. Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Sci Total Environ. 723:138181. doi:10.1016/j.scitotenv.2020.138181.
  • Beare MH, Hendrix PF, Cabrera ML, Coleman DC. 1994. Aggregate‐protected and unprotected organic matter pools in conventional‐and no‐tillage soils. Soil Sci Soc Am J. 58(3):787–795. doi:10.2136/sssaj1994.03615995005800030021x.
  • Bhattacharyya P, Munda S, Dash PK. 2019. Climate change and greenhouse gas emission. India: New India Publishing Agency, New Delhi, 110088; p. 195.
  • Bhattacharyya P, Nayak AK, Mohanty S, Tripathi R, Shahid M, Kumar A, Raja R, Panda BB, Roy KS, Neogi S, et al. 2013. Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil Till Res. 129:93–105. doi:10.1016/j.still.2013.01.014.
  • Bhattacharyya P, Neogi S, Roy KS, Dash PK, Nayak AK, Mohapatra T. 2014. Tropical low land rice ecosystem is a net carbon sink. Agric Ecosyst Environ. 189:127–135. doi:10.1016/j.agee.2014.03.013.
  • Bhattacharyya P, Roy KS, Nayak AK. 2016. Greenhouse gas emission from agriculture monitoring, quantification & mitigation. Delhi India: Narendra Publishing House; p. 193.
  • Bhattacharyya P, Roy KS, Neogi S, Adhya TK, Rao KS, Manna MC. 2012. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Till Res. 124:119–130. doi:10.1016/j.still.2012.05.015.
  • Bronick CJ, Lal R. 2005. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. Soil Till Res. 81(2):239–252. doi:10.1016/j.still.2004.09.011.
  • Chaitanya AK, Badole S, Padhan D, Majumder SP, Sreenivas C. 2017. Effect of long-term application of inorganic and organics on soil aggregate fractions in double rice cropping system. Int J Curr Microbiol Appl Sci. 6(8):3779–3789. doi:10.20546/ijcmas.2017.608.457.
  • Chaplot V. 2021. Evidences of plants’ impact on land degradation and climate change: an urgent call for new multidisciplinary research. Geoderma 392:114984. doi:10.1016/j.geoderma.2021.114984.
  • Chellappa J, Sagar KL, Sekaran U, Kumar S, Sharma P. 2021. Soil organic carbon, aggregate stability and biochemical activity under tilled and no-tilled agroecosystems. J Agric Food Res. 4:100139. doi:10.1016/j.jafr.2021.100139.
  • Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat Geosci. 12(12):989–994. doi:10.1038/s41561-019-0484-6.
  • Cui H, Ou Y, Wang L, Wu H, Yan B, Li Y. 2019. Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands. Chemosphere 223:319–329. doi:10.1016/j.chemosphere.2019.02.046.
  • Das B, Chakraborty D, Singh VK, Aggarwal P, Singh R, Dwivedi BS, Mishra RP. 2014. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system. Soil Till Res. 136:9–18. doi:10.1016/j.still.2013.09.009.
  • Dash PK, Bhattacharyya P, Roy KS, Neogi S, Nayak AK. 2019. Environmental constraints’ sensitivity of soil organic carbon decomposition to temperature, management practices and climate change. Ecol Indic. 107:105644. doi:10.1016/j.ecolind.2019.105644.
  • Dash PK, Bhattacharyya P, Shahid M, Roy KS, Swain CK, Tripathi R, Nayak AK. 2017. Low carbon resource conservation techniques for energy savings, carbon gain and lowering GHGs emission in lowland transplanted rice. Soil Till Res. 174:45–57. doi:10.1016/j.still.2017.06.001.
  • Dawe D, Dobermann A, Moya P, Abdulrachman S, Singh B, Lal P, Li SY, Lin B, Panaullah G, Sariam O, et al. 2000. How widespread are yield declines in long-term rice experiments in Asia?. Field Crops Res. 66(2):175–193. doi:10.1016/S0378-4290(00)00075-7.
  • Gajda AM, Czyz EA, Dexter AR. 2016. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality. Int Agrophys. 30(2):165–172. doi:10.1515/intag-2015-0081.
  • Ghosh A, Bhattacharyya R, Meena MC, Dwivedi BS, Singh G, Agnihotri R, Sharma C. 2018. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Till Res. 177:134–144. doi:10.1016/j.still.2017.12.006.
  • Ghosh BN, Meena VS, Alam NM, Dogra P, Bhattacharyya R, Sharma NK, Mishra PK. 2016. Impact of conservation practices on soil aggregation and the carbon management index after seven years of maize-wheat cropping system in the Indian Himalayas. Agric Ecosyst Environ. 216:247–257. doi:10.1016/j.agee.2015.09.038.
  • Goldberg N, Nachshon U, Argaman E, Ben-Hur M. 2020. Short term effects of livestock manures on soil structure stability, runoff and soil erosion in semi-arid soils under simulated rainfall. Geosciences 10(6):213. doi:10.3390/geosciences10060213.
  • Gomez KA, Gomez AA. 1984. Statistical procedures for agricultural research. 2 ed. New York: John Wiley and Sons.
  • Guo ZC, Zhang ZB, Zhou H, Rahman MT, Wang DZ, Guo XS, Li LJ, Peng XH. 2018. Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil Till Res. 180:232–237. doi:10.1016/j.still.2018.03.007.
  • Haefele SM, Wopereis MCS, Ndiaye MK, Barro SE, Isselmou MO. 2003. Internal nutrient efficiencies, fertilizer recovery rates and indigenous nutrient supply of irrigated lowland rice in Sahelian West Africa. Field Crops Res. 80(1):19–32. doi:10.1016/S0378-4290(02)00152-1.
  • He ZL, Wilson MJ, Campbell CO, Edwards AC, Chapman SJ. 1995. Distribution of phosphorus in soil aggregate fractions and its significance with regard to phosphorus transport in agricultural runoff. Water Air Soil Pollut. 83(1–2):69–84. doi:10.1007/BF00482594.
  • Jackson ML. 1967. Soil Chemical Analysis. New Delhi: Prentice Hall of India Pvt Ltd.
  • Jat HS, Datta A, Choudhary M, Yadav AK, Choudhary V, Sharma PC, Gathala MK, Jat ML, McDonald A. 2019. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil Till Res. 190:128–138. doi:10.1016/j.still.2019.03.005.
  • Kemper WD, Rosenau RC. 1986. Aggregate stability and size distribution. In: Methods of soil analyzed. Klute, A. part I. 2nd ed. Madison (WI): Agron. Monogr. 9. ASA and SSSA; p. 425–442.
  • Ladha JK, Dawe D, Pathak H, Padre AT, Yadav RL, Singh B, Singh Y, Singh Y, Singh P, Kundu AL, et al. 2003. How extensive are yield declines in long-term rice–wheat experiments in Asia?. Field Crops Res. 81(2–3):159–180. doi:10.1016/S0378-4290(02)00219-8.
  • Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma. 123(1–2):1–22. doi:10.1016/j.geoderma.2004.01.032.
  • Lal R. 2016. Beyond COP 21: potential and challenges of the “4 per Thousand” initiative. J Soil Water Conserv. 71(1):20A–25A. doi:10.2489/jswc.71.1.20A.
  • Maguire RO, Edward AC, Wilson MJ. 1998. Influence of cultivation on the distribution of phosphorus in three soils from NE Scotland and their aggregate size fractions. Soil Use Manage. 14(s4):147–153. doi:10.1111/j.1475-2743.1998.tb00633.x.
  • Maltas A, Kebli H, Oberholzer HR, Weisskopf P, Sinaj S. 2018. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long‐term field experiment under a Swiss conventional farming system. Land Degrad Dev. 29(4):926–938. doi:10.1002/ldr.2913.
  • Mikha MM, Rice CW. 2004. Tillage and manure effects on soil and aggregate‐associated carbon and nitrogen. Soil Sci Soc Am J. 68(3):809–816. doi:10.2136/sssaj2004.8090.
  • Mohanty S, Nayak AK, Kumar A, Tripathi R, Shahid M, Bhattacharyya P, Raja R, Panda BB. 2013. Carbon and nitrogen mineralization kinetics in soil of rice–rice system under long term application of chemical fertilizers and farmyard manure. Eur J Soil Biol. 58:113–121. doi:10.1016/j.ejsobi.2013.07.004.
  • Mustafa A, Minggang X, Shah SAA, Abrar MM, Nan S, Baoren W, Zejiang C, Saeed Q, Naveed M, Mehmood K, et al. 2020. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J Environ Manage. 270:110894. doi:10.1016/j.jenvman.2020.110894.
  • Nayak AK, Gangwar B, Shukla AK, Mazumdar SP, Kumar A, Raja R, Kumar A, Kumar V, Rai PK, Mohan U. 2012. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic Plains of India. Field Crops Res. 127:129–139. doi:10.1016/j.fcr.2011.11.011.
  • Oades JM, Waters AG. 1991. Aggregate hierarchy in soils. Soil Res. 29(6):815–828. doi:10.1071/SR9910815.
  • Pathak H, Byjesh K, Chakrabarti B, Aggarwal PK. 2011. Potential and cost of carbon sequestration in Indian agriculture: estimates from long-term field experiments. Field Crops Res. 120(1):102–111. doi:10.1016/j.fcr.2010.09.006.
  • Poulton P, Johnston J, Macdonald A, White R, Powlson D. 2018. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob Change Biol. 24(6):2563–2584. doi:10.1111/gcb.14066.
  • Rahman MT, Guo ZC, Zhang ZB, Zhou H, Peng XH. 2018. Wetting and drying cycles improving aggregation and associated C stabilization differently after straw or biochar incorporated into a Vertisol. Soil Till Res. 175:28–36. doi:10.1016/j.still.2017.08.007.
  • Shen P, Xu M, Zhang H, Yang X, Huang S, Zhang S, He X. 2014. Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena. 118:20–27. doi:10.1016/j.catena.2014.01.020.
  • Singh G, Jalota SK, Singh Y. 2007. Manuring and residue management effects on physical properties of a soil under the rice-wheat system in Punjab, India. Soil Till Res. 94(1):229–238. doi:10.1016/j.still.2006.07.020.
  • Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res. 79(1):7–31. doi:10.1016/j.still.2004.03.008.
  • Six J, Elliott ET, Paustian K. 1999. Aggregate and soil organic matter dynamics under conventional and no‐tillage systems. Soil Sci Soc Am J. 63(5):1350–1358. doi:10.2136/sssaj1999.6351350x.
  • Six J, Elliott ET, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 32(14):2099–2103. doi:10.1016/S0038-0717(00)00179-6.
  • Snyder JD, Trofymow JA. 1984. A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Commun Soil Sci Plant Anal. 15(5):587–597. doi:10.1080/00103628409367499.
  • Su YZ, Wang F, Suo DR, Zhang ZH, Du MW. 2006. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–maize cropping system in northwest China. Nutr Cycl Agroecosys. 75(1–3):285–295. doi:10.1007/s10705-006-9034-x.
  • Tanveer SK, Lu X, Hussain I, Sohail M. 2019. Soil carbon sequestration through agronomic management practices. In: CO2 Sequestration. Intech Open. doi:10.5772/intechopen.87107.
  • Tian J, Lou Y, Gao Y, Fang H, Liu S, Xu M, Blagodatskaya E, Kuzyakov Y. 2017. Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biol Fertil Soils 53(5):523–532. doi:10.1007/s00374-017-1189-x.
  • Tripathi R, Nayak AK, Bhattacharyya P, Shukla AK, Shahid M, Raja R, Panda BB, Mohanty S, Kumar A, Thilagam VK. 2014. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice-rice system. Geoderma 213:280–286. doi:10.1016/j.geoderma.2013.08.031.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi:10.1097/00010694-193401000-00003.
  • Wang X, Yost RS, Linquist BA. 2001. Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Sci Soc Am J. 65(1):139–146. doi:10.2136/sssaj2001.651139x.
  • Wang Y, Wang ZL, Zhang Q, Hu N, Li Z, Lou Y, Li Y, Xue D, Chen Y, Wu C, et al. 2018. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Sci Total Environ. 624:1131–1139. doi:10.1016/j.scitotenv.2017.12.113.
  • Yang Z, Singh BR, Hansen S. 2007. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils. Soil Till Res. 95(1–2):161–171. doi:10.1016/j.still.2006.12.003.
  • Yoder RE. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agron J. 28(5):337–351. doi:10.2134/agronj1936.00021962002800050001x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.