155
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multivariate modeling application to determine the behavior of picloram in soils: a laboratory trial

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 476-489 | Received 15 Mar 2021, Accepted 10 Nov 2021, Published online: 06 Feb 2022

References

  • [EMBRAPA] Empresa Brasileira de Pesquisa Agropecuária - Centro Nacional de Pesquisa de Solos. 1997. Manual de métodos de análise de solo [Soil Analysis Methods Manual]. [Rio de Janeiro]. [Accessed 2021 Jan 11]. https://www.agencia.cnptia.embrapa.br/Repositorio/Manual+de+Metodos_000fzvhotqk02wx5ok0q43a0ram31wtr.pdf. Portuguese.
  • [EMBRAPA] Empresa Brasileira de Pesquisa Agropecuária. 2010. Boletim de Pesquisa e Desenvolvimento: conceitos de fertilidade do solo e manejo adequado para as regiões tropicais [Research and Development Bulletin: concepts of soil fertility and proper management for tropical regions]. [Campinas]. Portuguese. [Accessed 2021 Jan 11]. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/31004/1/BPD-8.pdf
  • [MAPA] Ministério da Agricultura, Pecuária e Abastecimento. [date unknown]. AGROFIT – sistema de Agrotóxicos Fitossanitários [Phytosanitary pesticides system]. Portuguese. [ Accessed 2020 Jan 9] http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons
  • [OECD] Organization for Economic Co-operation and Development. 2000. OECD - guidelines for testing of chemicals: test nº 106: adsorption- desorption using a batch equilibrium method. Paris: OECD Publishing; p. 1–45.
  • [PubChem] National Center for Biotechnology Information. [date unknown]. Database. Picloram, CID=15965. [Bethesda]. [Accessed 2020 Jan 9]. https://pubchem.ncbi.nlm.nih.gov/compound/Picloram.
  • Adeux G, Munier-Jolain N, Meunier D, Farcy P, Carlesi S, Barberi P, Cordeau S. 2019. Diversified grain-based cropping systems provide long-term weed control while limiting herbicide use and yield losses. Agron Sustain Dev. 39(42):1–13. doi:10.1007/s13593-019-0587-x.
  • Ahmad KS. 2017. Pedospheric sorption investigation of sulfonyl urea herbicide Triasulfuron via regression correlation analysis in selected soils. S Afr J Chem. 70:163–170. doi:10.17159/0379-4350/2017/v70a23.
  • Barcellos Júnior LH, Pereira GAM, Da Conceição de Matos C, Souza PSR, Agazzi LR, Da Silva EMG, Da Silva AA. 2020. Influence of organic matter in sorption of the saflufenacil in ferralsols. Bull Environ Contam Toxicol. 107:263–268. doi:10.1007/s00128-020-02800-5
  • Bento LR, Castro AJR, Moreira AB, Ferreira OP, Bisinoti MC, Melo CA. 2019. Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse. Geoderma. 334:24–32. doi:10.1016/j.geoderma.2018.07.034.
  • Bošković N, Brandstätter-Scherr K, Sedláček P, Bílková Z, Bielská L, Hofman J. 2020. Adsorption of epoxiconazole and tebuconazole in twenty different agricultural soils in relation to their properties. Chemosphere. 261:127637. doi:10.1016/j.chemosphere.2020.127637.
  • Braga RR, Dos Santos JB, Zanuncio JC, Bibiano CS, Ferreira EA, Oliveira MC, Silva DV, Serrão JE. 2016. Effect of growing Brachiria brizantha on phytoremediation of picloram under different pH environments. Ecol Eng. 94:102–106. doi:10.1016/j.ecoleng.2016.05.050.
  • Carneiro GDOP, Souza MF, Lins HA, Chagas PSF, Da Silva TS, Tms T, Pavão QS, Grangeiro LC, Silva DV. 2020. Herbicide mixtures affect adsorption processes in soils under sugarcane cultivation. Geoderma. 379:114626. doi:10.1016/j.geoderma.2020.114626.
  • Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK. 2016. Production and utilization of biochar: a review. J Ind Eng Chem. 40:1–15. doi:10.1016/j.jiec.2016.06.002.
  • Chirukuri R, and Atmakuru R. 2015. Sorption characteristics and persistence of herbicide bispyribac sodium in different global soils. Chemosphere. 138: 932–939.
  • Conde-Cid M, Paradelo R, Fernández-Calviño D, Pérez-Novo C, Nóvoa-Múñoz JC, Arias-Estévez M. 2017. Retention of quaternary ammonium herbicides by acid vineyard soils with different organic matter and Cu contents. Geoderma. 293:26–33. doi:10.1016/j.geoderma.2017.01.027.
  • Cox L, Velarde P, Cabrera A, Hermosín MC, Cornejo J. 2007. Dissolved organic carbon interactions with sorption and leaching of diuron in organic‐amended soils. Eur J Soil Sci. 58(3):714–721. doi:10.1111/j.1365-2389.2006.00856.x.
  • Das Chagas PSF, de Freitas Souza M, Dombroski JLD, de Oliveira Junior RS, de Sousa Nunes GH, Pereira GAM, Silva TS, Passos ABRJ, Dos Santos JB, Silva DV. 2019. Multivariate analysis reveals significant diuron-related changes in the soil composition of different Brazilian regions. Sci Rep. 9(1):1–12. doi:10.1038/s41598-018-37186-2.
  • Das Chagas PSF, de Freitas Souza M, Freitas CDM, de Mesquita HC, Silva TS, Dos Santos JB, Passos ABRJ, de Medeiros RCA, Silva DV. 2020. Increases in pH, Ca2+, and Mg2+ alter the retention of diuron in different soils. CATENA. 188:104440. doi:10.1016/j.catena.2019.104440.
  • Dorado J, Almendros G. 2021. Organo-mineral interactions involved in herbicide sorption on soil amended with peats of different maturity degree. Agronomy. 11:869. doi:10.3390/agronomy11050869.
  • Dos Santos LOG, Souza MF, Das Chagas PSF, Fernandes BCC, Silva TS, Dombroski JLD, Souza CMM, Silva DV. 2019b. Effect of liming on hexazinone sorption and desorption behavior in various soils. Arch Agron Soil Sci. 65(9):1183–1195. doi:10.1080/03650340.2018.1557323.
  • Dos Santos LOG, Souza MF, Das Chagas PSF, Teófilo TMS, Formiga MAP, de Medeiros RCA, Silva DV. 2019a. Multivariate analysis and multiple linear regression as a tool to estimate the behavior of hexazinone in Brazilian soils. Environ Monit Assess. 191(11):671. doi:10.1007/s10661-019-7893-2.
  • Droge ST, and Goss KU.2013. Ion-exchange affinity of organic cations to natural organic matter: influence of amine type and nonionic interactions at two different pHs. Environ Sci Technol. 47(2):798–806.
  • Đurović R, Gajić-Umiljendić J, Đorđević T. 2009. Effects of organic matter and clay content in soil on pesticide adsorption processes. Pestic fitomed. 24(1):51–57. doi:10.2298/PIF0901051D.
  • Faria AT, Fialho CA, Souza MF, Freitas NM, Silva AA. 2019. Sorption and desorption of tembotrione and its metabolite AE 1417268 in soils with different attributes. Planta Daninha. 37:e019168791. doi:10.1590/s0100-83582019370100096.
  • Firdous S, Begum S, Yasmin A. 2016. Assessment of soil quality parameters using multivariate analysis in the Rawal Lake watershed. Environ Monit Assess. 188(9):533. doi:10.1007/s10661-016-5527-5.
  • Gabos MB, Alleoni LRF, Abreu CA. 2014. Background levels of selenium in some selected Brazilian tropical soils. J Geochem Explor. 145:35–39. doi:10.1016/j.gexplo.2014.05.007.
  • Gaona L, Bedmar F, Gianelli V, Faberi AJ, Angelini H. 2019. Estimating the risk of groundwater contamination and environmental impact of pesticides in an agricultural basin in Argentina. Int J Environ Sci Technol. 16(11):6657–6670. doi:10.1007/s13762-019-02267-w.
  • García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. 2020. Organic carbon nature determines the capacity of organic amendments to adsorb pesticides in soil. J Hazard Mater. 390:122162. doi:10.1016/j.jhazmat.2020.122162.
  • Gawel A, Seiwert B, Sühnholz S, Schmitt-Jansen M, Mackenzie K. 2020. In-situ treatment of herbicide-contaminated groundwater–Feasibility study for the cases atrazine and bromacil using two novel nanoremediation-type materials. J Hazard Mater. 393:122470. doi:10.1016/j.jhazmat.2020.122470.
  • Glass RL. 1987. Adsorption of glyphosate by soils and clay minerals. J Agric Food Chem. 35:497–500. doi:10.1021/jf00076a013.
  • Hall KE, Ray C, Ki SJ, Spokas KA, Koskinen WC. 2015. Pesticide sorption and leaching potential on three Hawaiian soils. J Environ Manag. 159:227–234. doi:10.1016/j.jenvman.2015.04.046.
  • Hayes MH, Swift RS. 2018. An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances. J Soils Sediments. 18(4):1212–1231. doi:10.1007/s11368-016-1636-6.
  • Herrero-Hernández E, Rodríguez-Cruz MS, Pose-Juan E, Sánchez-González S, Andrades MS, Sánchez-Martín MJ. 2017. Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci Total Environ. 609:161–171. doi:10.1016/j.scitotenv.2017.07.113.
  • Kaur P, Kaur P. 2018. Time and temperature dependent adsorption-desorption behaviour of pretilachlor in soil. Ecotoxicol Environ Saf. 161:145–155. doi:10.1016/j.ecoenv.2018.05.081.
  • Khaledian Y, Kiani F, Ebrahimi S, Brevik EC, Aitkenhead‐Peterson J. 2017. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad Dev. 28(1):128–141. doi:10.1002/ldr.2541.
  • Li JY, Xu RK, Zhang H. 2012. Iron oxides serve as natural anti-acidification agents in highly weathered soils. J Soils Sediments. 12(6):876–887. doi:10.1007/s11368-012-0514-0.
  • Maciel GM, Inácio FD, de Sá-nakanishi AB, Haminiuk CWI, Castoldi R, Comar JF, Bracht A, Peralta RM. 2013. Response of Ganoderma lucidum and Trametes sp. to the herbicide picloram: tolerance, antioxidants and production of ligninolytic enzymes. Pestic Biochem Physiol. 105(2):84–92. doi:10.1016/j.pestbp.2012.12.002.
  • Marco-Brown JL, Gaigneaux EM, Sánchez RMT, Afonso MS. 2019. Adsorption of picloram on clays nontronite, illite and kaolinite: equilibrium and herbicide-clays surface complexes. J Environ Sci Health Part B. 54(4):281–289. doi:10.1080/03601234.2018.1561055.
  • Marco-Brown JL, Undabeytia T, Sánchez RMT, Afonso MS. 2017. Slow-release formulations of the herbicide picloram by using Fe–Al pillared montmorillonite. Environ Sci Pollut Res. 24(11):10410–10420. doi:10.1007/s11356-017-8699-9.
  • Mendes KF, dos Reis MR, Inoue MH, Pimpinato RF, Tornisielo VL. 2016. Sorption and desorption of mesotrione alone and mixed with S-metolachlor + terbuthylazine in Brazilian soils. Geoderma. 280:22–28. doi:10.1016/j.geoderma.2016.06.014.
  • Mendes KF, Olivatto GP, de Sousa RN, Junqueira LV, Tornisielo VL. 2019. Natural biochar effect on sorption–desorption and mobility of diclosulam and pendimethalin in soil. Geoderma. 347:118–125. doi:10.1016/j.geoderma.2019.03.038.
  • Mendonça ES, Rowell DL. 1996. Mineral and organic fractions of two oxisols and their influence on effective cation-exchange capacity. Soil Sci Soc Am J. 60(6):1888–1892. doi:10.2136/sssaj1996.03615995006000060038x.
  • Murphy EM, Zachara JM, Smith SC, Phillips JL. 1992. The sorption of humic acids to mineral surfaces and their role in contaminant binding. Sci Total Environ. 117:413–423. doi:10.1016/0048-9697(92)90107-4.
  • Ortiz AMG, Okada E, Bedmar F, Costa JL. 2017. Sorption and desorption of glyphosate in mollisols and ultisols soils of Argentina. Environ Toxicol Chem. 36:2587–2592. doi:10.1002/etc.3851.
  • Palma G, Sánchez A, Olave Y, Encina F, Palma R, Barra R. 2004. Pesticide levels in surface waters in an agricultural–forestry basin in Southern Chile. Chemosphere. 57(8):763–770. doi:10.1016/j.chemosphere.2004.08.047.
  • Pang L, Close ME, Watt JP, Vincent KW. 2000. Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. J Contam Hydrol. 44(1):19–46. doi:10.1016/S0169-7722(00)00091-7.
  • Passos ABRJ, Freitas MAM, Torres LG, Silva AA, Queiroz MEL, Lima CF. 2013. Sorption and desorption of sulfentrazone in Brazilian soils. J Environ Sci Health Part B. 48(8):646–650. doi:10.1080/03601234.2013.777313.
  • Passos ABRJ, Souza MF, Saraiva DT, Silva AA, Queiroz MEL, Carvalho FP, Silva DV. 2019. Effects of liming and Urochloa brizantha management on leaching potential of picloram. Water Air Soil Pollut. 230(1):12. doi:10.1007/s11270-018-4062-0.
  • Passos ABRJ, Souza MF, Silva DV, Saraiva DT, Silva AA, Zanuncio JC, Gonçalves BFS. 2018. Persistence of picloram in soil with different vegetation management. Environ Sci Pollut Res. 25(24):23986–23991. doi:10.1007/s11356-018-2443-y.
  • Peixoto MM, Bauerfeldt GF, Herbst MH, Pereira MS, Silva CO. 2015. Study of the stepwise deprotonation reactions of Glyphosate and the corresponding p K a values in aqueous solution. J Phys Chem A. 119(21):5241–5249. doi:10.1021/jp5099552.
  • Pereira EAO, Melo VF, Abate G, Masini JC. 2019. Adsorption of glyphosate on Brazilian subtropical soils rich in iron and aluminum oxides. J Environ Sci Health Part B. 54(11):906–914. doi:10.1080/03601234.2019.1644947.
  • Pereira GAM, Rodrigues DA, Fonseca LABV, Passos ABRJ, Silva MRF, Silva DV, Silva AA. 2020. Sorption and desorption behavior of herbicide clomazone in soil form Brazil. Biosci J. 34(6):1496–1504.
  • Peruchi LM, Fostier AH, and Rath S. 2015. Sorption of norfloxacin in soils: Analytical method, kinetics and Freundlich isotherms. Chemosphere. 119: 310–317.
  • Prado B, Duwig C, Hidalgo C, Müller K, Mora L, Raymundo E, Etchevers JD. 2014. Transport, sorption and degradation of atrazine in two clay soils from Mexico: andosol and Vertisol. Geoderma. 232:628–639. doi:10.1016/j.geoderma.2014.06.011.
  • Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC. 2004. [Validation for chromatographic and electrophoretic methods]. Quím Nova. 27(5):771–780. Portuguese. doi:10.1590/S0100-40422004000500017.
  • Saidian M, Godinez LJ, Prasad M. 2016. Effect of clay and organic matter on nitrogen adsorption specific surface area and cation exchange capacity in shales (mudrocks). J Nat Gas Sci Eng. 33:1095–1106. doi:10.1016/j.jngse.2016.05.064.
  • Santos LBO, Infante CMC, and Masini JC. 2010. Determination of Picloram in Waters by Sequential Injection Chromatography with UV Detection. J Braz Chem Soc. 21:1557–1562.
  • Sarkar B, Mukhopadhyay R, Mandal A, Mandal S, Vithanage M, Biswas JK. 2020. Agrochemicals detection, treatment and remediation. Cambridge (MA): Butterworth-Heinemann. Chapter 8, sorption and desorption of agro-pesticides in soils; p. 189-205.
  • Shan R, Chen Y, Meng L, Li H, Zhao Z, Gao M, Sun X. 2020. Rapid prediction of atrazine sorption in soil using visible near-infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 224:117455. doi:10.1016/j.saa.2019.117455.
  • Silva TS, Souza MF, Teófilo TMS, Dos Santos MS, Porto MAF, Souza CMM, Silva DV. 2019. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: a case study of diuron, hexazinone, and sulfometuron-methyl in Brazil. Chemosphere. 236:124333. doi:10.1016/j.chemosphere.2019.07.064.
  • Singh B, Farenhorst A, Gaultier J, Pennock D, Degenhardt D, McQueen R. 2014. Soil characteristics and herbicide sorption coefficients in 140 soil profiles of two irregular undulating to hummocky terrains of western Canada. Geoderma. 232:107–116. doi:10.1016/j.geoderma.2014.05.003.
  • Smith AE, Waite D, Grover R, Kerr LA, Milward LJ, Sommerstad H. 1988. Persistence and movement of picloram in a northern Saskatchewan watershed. J Environ Qual. 17(2):262–268. doi:10.2134/jeq1988.00472425001700020017x.
  • Teixeira MFF, Silva AA, Nascimento MA, Vieira LS, Teixeira TPM, Souza MF. 2018. Effects of adding organic matter to a red-yellow latosol in the sorption and desorption of Tebuthiuron. Planta Daninha. 36:e018168639. doi:10.1590/s0100-83582018360100095.
  • Yavari S, Sapari NB, Malakahmad A, Razali MAB, Gervais TS, Yavari S. 2020. Adsorption–desorption behavior of polar Imidazolinone herbicides in tropical paddy fields soils. Bull Environ Contam Toxicol. 104(1):121–127. doi:10.1007/s00128-019-02759-y.
  • Zhang H, Lin K, Wang H, Gan J. 2010. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut. 158(9):2821–2825. doi:10.1016/j.envpol.2010.06.025.
  • Zhang Y, Li W, Zhou W, Jia H, Li B. 2020. Adsorption-desorption characteristics of pyraclonil in eight agricultural soils. J Soils Sediments. 20:1404–1412. doi:10.1007/s11368-019-02471-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.