233
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Combined application of animal manure and stover enhance labile organic carbon and benefit the microbial community in dark brown soil

, , , &
Pages 519-532 | Received 05 Mar 2021, Accepted 11 Nov 2021, Published online: 08 Dec 2021

References

  • Artiola JF. 1990. Determination of carbon, nitrogen and sulfur in soils, sediments and wastes: a comparative study. Int J Environ An Ch. 41(3–4):159–171. doi:10.1080/03067319008027358.
  • Atia AM, Mallarino AP. 2002. Agronomic and environmental soil phosphorus testing in soils receiving liquid swine manure. Soil Sci Soc Am J. 66(5):1696–1705. doi:10.2136/sssaj2002.1696.
  • Benbi DK, Bear K, Toor AS, Sharma S. 2015. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system [J]. Pedosphere. 25(4):534–545. doi:10.1016/S1002-0160(15)30034-5.
  • Carter MR, Gregorich EG. 2007. Soil sampling and methods of analysis, second edition || soil sampling designs. Soil Sampling and Handling. doi:10.1201/9781420005271.ch1.
  • Chen X, Li Z, Liu M, Jiang C, Che Y. 2015. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years. J Soil Sediment. 15(2):292–301. doi:10.1007/s11368-014-0981-6.
  • Chen Z, Zhang W, Yang L, Stedtfeld RD, Peng A, Gu C, Boyd SA, Li H. 2019. Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manure. Environ Pollut. 248: 947–957. doi:10.1016/j.envpol.2019.02.093.
  • Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT. 2005. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure [J]. Soil Biol Biochem. 37(9):1726–1737. doi:10.1016/j.soilbio.2005.02.007.
  • Cooper JM, Burton D, Daniell TJ, Griffiths BS, Zebarth BJ. 2011. Carbon mineralization kinetics and soil biological characteristics as influenced by manure addition in soil incubated at a range of temperatures [J]. Eur J Soil Biol. 47(6):392–399. doi:10.1016/j.ejsobi.2011.07.010.
  • Eichorst SA, Kuske CR, Schmidt TM. 2011. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria [J]. Appl Environ Microbiol. 77(2):586–596. doi:10.1128/AEM.01080-10.
  • Fan J, Ding W, Xiang J, Qin S, Zhang J, Ziadi N. 2014. Carbon sequestration in an intensively cultivated sandy loam soil in the North China plain as affected by compost and inorganic fertilizer application. Geoderma. 230:22–28. doi:10.1016/j.geoderma.2014.03.027
  • Feng WT, Schaefer DA, Zou XM, Zhang M. 2011. Shifting sources of soil labile organic carbon after termination of plant carbon inputs in a subtropical moist forest of southwest China [J]. Ecol Res. 26(2):437–444. doi:10.1007/s11284-010-0796-x.
  • Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 15(10):579–590. doi:10.1038/nrmicro.2017.87.
  • Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria [J]. Ecology. 88(6):1354–1364. doi:10.1890/05-1839.
  • Foesel BU, Nägele V, Naether A, Wüst PK, Weinert J, Bonkowski M, Lohaus G, Polle A, Alt F, Oelmann Y, et al. 2014. Determinants of acidobacteria activity inferred from the relative abundances of 16SrRNA transcripts in German grassland and forest soils [J]. Environ Microbiol. 16(3):658–675. doi:10.1111/1462-2920.12162.
  • Gao S, Gao J, Cao W, Zou C, Huang J, Bai J, Dou F. 2018. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil [J]. J Integr Agr. 17(8):1852–1860. doi:10.1016/S2095-3119(17)61901-4.
  • Gong W, Yan X, Wang J, Hu T, Gong Y. 2009. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China plain. Plant Soil. 314(1–2):67–76. doi:10.1007/s11104-008-9705-2.
  • Gougoulias C, Clark JM, Shaw LJ. 2014. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agr. 94(12):2362–2371. doi:10.1002/jsfa.6577.
  • Haynes RJ. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron. 85:221–268. doi:10.1016/S0065-2113(04)85005-3
  • Hopkins DW, Sparrow AD, Gregorich EG, Elberling B, Novis P, Fraser F, Scrimgeour C, Dennis PG, Meier-Augenstein W, Greenfield LG. 2009. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys [J]. Environ Microbiol. 11(3):597–608. doi:10.1111/j.1462-2920.2008.01830.x.
  • Jiao XG, Gao CS, Lü GH, Sui YY. 2011. Effect of long-term fertilization on soil enzyme activities under different hydrothermal conditions in Northeast China. J Integr Agr. 10:412–422. doi:10.1016/S1671-2927(11)60020-5.
  • Kinnunen A, Maijala P, Jarvinen P, Hatakka A. 2017. Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes [J]. Current Biotechnology. 6(2):105–115. doi:10.2174/2211550105666160330205138.
  • Li J, Wen Y, Li X, Li Y, Yang X, Lin Z, Song Z, Cooper JM, Zhao B. 2018. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China plain. Soil Till Res. 175:281–290. doi:10.1016/j.still.2017.08.008.
  • Li T, Zhang Y, Bei S, Li X, Reinsch S, Zhang H, Zhang J. 2020. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena. 194:104739. doi:10.1016/j.catena.2020.104739.
  • Li YM, Duan Y, Wang GL, Wang AQ, Shao GZ, Meng XH, Hu HY, Zhang DM. 2021. Straw alters the soil organic carbon composition and microbial community under different tillage practices in a meadow soil in Northeast China [J]. Soil Till Res. 208: 104879. doi:10.1016/J.STILL.2020.104879.
  • Liang Q, Chen H, Gong Y, Fan M, Yang H, Lal R, Kuzyakov Y. 2012. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat maize system in the North China Plain. Nutr Cycl Agroecosys. 92(1):21–33. doi:10.1007/s10705-011-9469-6.
  • Liu SW, Zhang YJ, Zong YJ, Hu ZQ, Wu S, Zhou J, Jin YG, Zou JW. 2016. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy. 8(2):392–406. doi:10.1111/gcbb.12265.
  • Long P. 2014. Effects of organic wastes incorporation on soil organic carbon and net carbon balance in wheat-maize farming system [D]. China Agriculture University.
  • Lopatto E, Choi J, Colina A, Ma L, Howe A, Hinsa-Leasure S. 2019. Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. PLoS One. 14(8):e0220770. doi:10.1371/journal.pone.0220770.
  • López-Mondéjar R, Vorˇíková J, Větrovsky T, Baldrian P. 2015. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics [J]. Soil Biol Biochem. 87:43–50. doi:10.1016/j.soilbio.2015.04.008
  • Lu F, Wang XK, Han B, Ouyang ZY, Duan XN, Zheng H, Miao H. 2009. Soil carbon sequestrations by nitrogen fertilizer application, straw return and notillage in China’s cropland. Glob Chang Biol. 15(2):281–305. doi:10.1111/j.1365-2486.2008.01743.x.
  • Lützow MV, Gelknabner IK, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B. 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms[J]. Soil Biol Biochem. 39(9):2183–2207. doi:10.1016/j.soilbio.2007.03.007.
  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ, Woese CR. 1997. The RDP (ribosomal database project). Nucleic Acids Res. 25(1):109–111. doi:10.1093/nar/25.1.109.
  • Maillard E, Angers DA. 2014. Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Chang Biol. 20(2):666–679. doi:10.1111/gcb.12438.
  • Majumder B, Mandal B, Bandyopadhyay PK. 2008. Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice-berseem agroecosystem. Biol Fertil Soils. 44(3):451–461. doi:10.1007/s00374-007-0226-6.
  • Maltas A, Kebli H, Oberholzer HR, Weisskopf P, Sinaj S. 2018. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degrad Dev. 29(4):926–938. doi:10.1002/ldr.2913.
  • Mandal N, Dwivedi BS, Meena MC, Singh D, Datta SP, Tomar RK, Sharma BM. 2013. Effect of induced defoliation in pigeonpea, farmyard manure and sulphitation pressmud on soil organic carbon fractions, mineral nitrogen and crop yields in a pigeonpea−wheat cropping system. Field Crop Res. 154(6):178–187. doi:10.1016/j.fcr.2013.08.007.
  • Marschner P, Umar S, Baumann K. 2011. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biol Biochem. 43(2):445–451. doi:10.1016/j.soilbio.2010.11.015.
  • Mi WH, Wu LH, Brookes PC, Liu YL, Zhang X, Yang X. 2016. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil Till Res. 163:64–70. doi:10.1016/j.still.2016.05.009
  • Ouyang W, Shan Y, Hao F, Chen S, Pu X, Wang M. 2013. The effect on soil nutrients resulting from land use transformations in a freeze-thaw agricultural ecosystem. Soil Till Res. 132:30–38. doi:10.1016/j.still.2013.04.007
  • Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, Heuvelink GBM, Schuur EAG, Maestre FT. 2018. Soil resources and element stocks in drylands to face global issues. Sci Rep-UK. 8(1):13788. doi:10.1038/s41598-018-32229-0.
  • Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C. 2014. Identifying soil organic carbon fractions sensitive to agricultural management practices [J]. Soil Till Res. 139:19–22. doi:10.1016/j.still.2014.01.006
  • Singh S, Ghoshal N, Singh KP. 2007. Variations in soil microbial biomass and crop roots due to differing resource quality inputs in a tropical dryland agroecosystem [J]. Soil Biol Biochem. 39(1):76–86. doi:10.1016/j.soilbio.2006.06.013.
  • Stocker MD, Pachepsky YA, Hill RL, Shelton DR, Schaffner DW. 2015. Depth-dependent survival of Escherichia coli and enterococci in soil after manure application and simulated rainfall. Appl Environ Microbiol. 81(14):4801–4808. doi:10.1128/AEM.00705-15.
  • Sul WJ, Asuming-Brempong S, Wang Q, Tourlousse DM, Penton CR, Deng Y, Penton JLM, Adiku SGK, Jones JW, Zhou JZ, et al. 2013. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon [J]. Soil Biol Biochem. 65:33–38. doi:10.1016/j.soilbio.2013.05.007
  • Suvendu D, Jeong ST, Subhasis D, Kim PJ. 2017. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Front Microbiol. 8:1–10. doi:10.3389/fmicb.2017.01702.
  • Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A. 2013. Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ. 465:72–96. doi:10.1016/j.scitotenv.2013.01.031
  • Thiet RK, Frey SD, Six J. 2005. Do growth yield efficiencies differ between soil microbial communities differing in fungal: bacterial ratios? Reality check and methodological issues. Soil Biol Biochem. 38(4):837–844. doi:10.1016/j.soilbio.2005.07.010.
  • Troyer ID, Amery F, Moorleghem CV, Smolders E, Merckx R. 2011. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: a batch incubation study. Soil Biol Biochem. 43(3): pp. 513–519. doi:10.1016/j.soilbio.2010.11.016.
  • Turkmen N, Sari F, Velioglu YS. 2006. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 99(4):835–841. doi:10.1016/j.foodchem.2005.08.034.
  • Van-Soest PJ. 1963. Use of detergents in the analysis of fibrous feeds II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem. 49(4):546–551. doi:10.1093/jaoac/73.4.491.
  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 19(6):703–707. doi:10.1016/0038-0717(87)90052-6.
  • Woloszczyk P, Fiencke C, Elsner D, Cordsen E, Pfeiffer E. 2020. Spatial and temporal patterns in soil organic carbon, microbial biomass and activity under different land-use types in a long-term soil-monitoring network [J]. Pedobiologia. 80:150642. doi:10.1016/j.pedobi.2020.150642
  • Wu JG, Lv Y, Wang MH. 2004. Study on decomposition of organic fertilizers by FTIR. Plant Nutr Fert Sci. 10(3):259–266. doi:10.3321/j.1008-505X.2004.03.008.
  • Yan X, Zhou H, Zhu QH, Wang XF, Zhang YZ, Yu XC, Peng X. 2013. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Till Res. 130:42–51. doi:10.1016/j.still.2013.01.013
  • Yeomans J, Bremner JM. 1998. A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plan. 19(13):1467–1476. doi:10.1080/00103628809368027.
  • Yu QG, Hu X, Ma JW, Ye J, Sun WC, Wang Q, Lin H. 2020. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil Till Res. 196:104483. doi:10.1016/j.still.2019.104483.
  • Zhang S, Sun L, Wang Y, Fan K, Xu Q, Li Y, Ma Q, Wang J, Ren W, Ding Z. 2020. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol. 20(1):190. doi:10.1186/s12866-020-01871-y.
  • Zhang W, Xu M, Wang X, Huang Q, Nie J, Li Z, Li S, Hwang SW, Lee KB. 2012. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J Soil Sediment. 12(4):457–470. doi:10.1007/s11368-011-0467-8.
  • Zhou GP, Gao SJ, Lu YH, Liao YL, Nie J, Cao WD. 2020. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China [J]. Soil Till Res. 197:104499. doi:10.1016/j.still.2019.104499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.