184
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nickel behavior as affected by various physical-chemical modified biochars of cypress cones in a calcareous nickel-spiked soil

&
Pages 981-998 | Received 19 Oct 2021, Accepted 25 Feb 2022, Published online: 07 Mar 2022

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Ok YS, Lee SS, Ok YS. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99:19–33. doi:10.1016/j.chemosphere.2013.10.071.
  • Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M. 2016. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol. 214:836–851. doi:10.1016/j.biortech.2016.05.057.
  • Anae J, Ahmad N, Kumar V, Thakur VK, Gutierrez T, Yang XJ, Cai C, Yang Z, Coulon F. 2020. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: remediation strategies and future perspectives. Sci Total Environ. 767:144351. doi:10.1016/j.scitotenv.2020.144351.
  • Barzin M, Kheirabadi H, Afyuni M. 2015. An investigation into pollution of selected heavy metals of surface soils in Hamadan province using pollution index. J Sci Technol Agric Natur Resour. 19:69–80.
  • Biswas S, Mohapatra SS, Kumari U, Meikap BC, Sen TK. 2020. Batch and continuous closed circuit semi-fluidized bed operation: removal of MB dye using sugarcane bagasse biochar and alginate composite adsorbents. J Environ Chem Eng. 8(1):103637. doi:10.1016/j.jece.2019.103637.
  • Boostani HR, Hardie AG, Najafi-Ghiri M. 2019. Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Arch Agron Soil Sci. 66(6):730–742. doi:10.1080/03650340.2019.1634805.
  • Boostani HR, Najafi-Ghiri M, Hardie AG. 2020. Nickel immobilization in a contaminated calcareous soil with application of organic amendments and their derived biochars. Commun Soil Sci Plant Anal. 51(4):503–514. doi:10.1080/00103624.2020.1717511.
  • Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA. 2014. New approaches to measuring biochar density and porosity. Biomass Bioenergy. 66:176–185. doi:10.1016/j.biombioe.2014.03.059.
  • Brunori C, Cremisini C, D’annibale L, Massanisso P, Pinto V. 2005. A kinetic study of trace element leachability from abandoned-mine-polluted soil treated with SS-MSW compost and red mud. Comparison with results from sequential extraction. Anal Bioanal Chem. 381(7):1347–1354. doi:10.1007/s00216-005-3124-5.
  • Burk GA, Herath A, Crisler GB II, Bridges D, Patel S, Pittman CU Jr, Mlsna T. 2020. Cadmium and copper removal from aqueous solutions using chitosan-coated gasifier biochar. Front Environ Sci. 8:1–11. doi:10.3389/fenvs.2020.541203.
  • de Souza Souza C, Bomfim MR, de Almeida M, de Souza Alves L, de Santana WN, da Silva Amorim IC, Santos JAG. 2021. Induced changes of pyrolysis temperature on the physicochemical traits of sewage sludge and on the potential ecological risks. Sci Rep. 11(1):1–13. doi:10.1038/s41598-020-79658-4.
  • Dewage NB, Fowler RE, Pittman CU, Mohan D, Mlsna T. 2018. Lead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies. RSC Adv. 8(45):25368–25377. doi:10.1039/C8RA04600J.
  • Ding Z, Hu X, Wan Y, Wang S, Gao B. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests. J Ind Eng Chem. 33:239–245. doi:10.1016/j.jiec.2015.10.007.
  • Echevarria G, Massoura ST, Sterckeman T, Becquer T, Schwartz C, Morel JL. 2006. Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem. 25(3):643–651. doi:10.1897/05-051R.1.
  • Fan Y, Wang B, Yuan S, Wu X, Chen J, Wang L. 2010. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour Technol. 101(19):7661–7664. doi:10.1016/j.biortech.2010.04.046.
  • Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. 2020. Nickel: human health and environmental toxicology. Int J Environ Res Public Health. 17(3):679. doi:10.3390/ijerph17030679.
  • Gupta S, Babu B 2006. Adsorption of chromium (VI) by a low-cost adsorbent prepared from tamarind seeds. Proceedings of International Symposium & 59th Annual Session of IIChE in association with International Partners (CHEMCON-2006), GNFC Complex, Bharuch; Citeseer.
  • Hannan F, Huang Q, Farooq MA, Ayyaz A, Ma J, Zhang N, Ali B, Deyett E, Zhou W, Islam F. 2021. Organic and inorganic amendments for the remediation of nickel contaminated soil and its improvement on Brassica napus growth and oxidative defense. J Hazard Mater. 416:125921. doi:10.1016/j.jhazmat.2021.125921.
  • He Z, Ohno T. 2012. Fourier transform infrared and fluorescence spectral features of organic matter in conventional and organic dairy manure. J Environ Qual. 41(3):911–919. doi:10.2134/jeq2011.0226.
  • Hseu ZY, Su YC, Zehetner F, Hsi HC. 2017. Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria. J Environ Manage. 186:151–157. doi:10.1016/j.jenvman.2016.02.034.
  • Hu Y, Cheng H, Tao S. 2016. The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ Int. 92:515–532. doi:10.1016/j.envint.2016.04.042.
  • Hu X, Xue Y, Long L, Zhang K. 2018. Characteristics and batch experiments of acid-and alkali-modified corncob biomass for nitrate removal from aqueous solution. Environ Sci Pollut Res. 25(20):19932–19940. doi:10.1007/s11356-018-2198-5.
  • Iftikhar S, Turan V, Tauqeer HM, Rasool B, Zubair M, Khan MA, Akhtar S, Khan SA, Basharat Z, Zulfiqar I, et al. 2021. Phytomanagement of As-contaminated matrix: physiological and molecular basis. In: Hasanuzzaman M, Prasad MNV. Handbook of Bioremediation. Amsterdam: Elsevier; p. 61–79.
  • Jiang J, Rk X, Jiang T, Li Z. 2012. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater. 229:145–150. doi:10.1016/j.jhazmat.2012.05.086.
  • Jordão CP, de Andrade RP, Cotta AJ, Cecon PR, Neves JC, Fontes MP, Fernandes RB. 2013. Copper, nickel and zinc accumulations in lettuce grown in soil amended with contaminated cattle manure vermicompost after sequential cultivations. Environ Technol. 34(6):765–777. doi:10.1080/09593330.2012.715759.
  • Keiluweit M, Nico PS, Johnson MG, Kleber M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol. 44(4):1247–1253. doi:10.1021/es9031419.
  • Khan MA, Ramzani PMA, Zubair M, Rasool B, Khan MK, Ahmed A, Iqbal M. 2020. Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci Total Environ. 710:136294. doi:10.1016/j.scitotenv.2019.136294.
  • Komnitsas KA, Zaharaki D. 2016. Morphology of modified biochar and its potential for phenol removal from aqueous solutions. Front Environ Sci. 4:26. doi:10.3389/fenvs.2016.00026.
  • Kónya Z, Vesselenyi I, Niesz K, Kukovecz A, Demortier A, Fonseca A, Delhalle J, Mekhalif Z, Nagy JB, Koós A. 2002. Large scale production of short functionalized carbon nanotubes. Chem Phys Lett. 360(5–6):429–435. doi:10.1016/S0009-2614(02)00900-4.
  • Li H, Ye X, Geng Z, Zhou H, Guo X, Zhang Y, Zhao H, Wang G. 2016. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J Hazard Mater. 304:40–48. doi:10.1016/j.jhazmat.2015.10.048.
  • Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 633:206–219. doi:10.1016/j.scitotenv.2018.03.161.
  • Loeppert RH, Suarez DL. 1996. Carbonate and gypsum. Methods of soil analysis: Part 3 Chemical methods. 3. 437–474.
  • Lyu H, Gao B, He F, Zimmerman AR, Ding C, Huang H, Tang J. 2018. Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ Pollut. 233:54–63. doi:10.1016/j.envpol.2017.10.037.
  • Ma Z, Du W, Yan Z, Chen X, Wang Y, Mao Z. 2021. Removal of phloridzin by chitosan-modified biochar prepared from apple branches. Anal Lett. 54(5):903–918. doi:10.1080/00032719.2020.1786696.
  • Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel J-L. 2006. Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma. 136(1–2):28–37. doi:10.1016/j.geoderma.2006.01.008.
  • Méndez A, Barriga S, Fidalgo J, Gascó G. 2009. Adsorbent materials from paper industry waste materials and their use in Cu (II) removal from water. J Hazard Mater. 165(1–3):736–743. doi:10.1016/j.jhazmat.2008.10.055.
  • Naeem I, Masood N, Turan V, Iqbal M. 2021. Prospective usage of magnesium potassium phosphate cement combined with Bougainvillea alba derived biochar to reduce Pb bioavailability in soil and its uptake by Spinacia oleracea L. Ecotoxicol Environ Saf. 208:111723. doi:10.1016/j.ecoenv.2020.111723.
  • Naghdi M, Taheran M, Brar SK, Rouissi T, Verma M, Surampalli RY, Valero JR. 2017. A green method for production of nanobiochar by ball milling-optimization and characterization. J Clean Prod. 164:1394–1405. doi:10.1016/j.jclepro.2017.07.084.
  • Nelson D, Sommers L. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL. methods of soil analysis. Madison (WI): Agronomy Series; p. 961–1010.
  • Peterson SC, Jackson MA, Kim S, Palmquist DE. 2012. Increasing biochar surface area: optimization of ball milling parameters. Powder Technol. 228:115–120. doi:10.1016/j.powtec.2012.05.005.
  • Qin Y, Zhu X, Su Q, Anumah A, Gao B, Lyu W, Zhou X, Xing Y, Wang B. 2020. Enhanced removal of ammonium from water by ball-milled biochar. Environ Geochem Health. 42(6):1579–1587. doi:10.1007/s10653-019-00474-5.
  • Ramola S, Mishra T, Rana G, Srivastava R. 2014. Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre. Environ Monit Assess. 186(12):9023–9039. doi:10.1007/s10661-014-4062-5.
  • Rasool B, Ramzani PMA, Zubair M, Khan MA, Lewińska K, Turan V, Iqbal M. 2021. Impacts of oxalic acid-activated phosphate rock and root-induced changes on Pb bioavailability in the rhizosphere and its distribution in mung bean plant. Environ Pollut. 280:116903. doi:10.1016/j.envpol.2021.116903.
  • Rinklebe J, Shaheen SM. 2014. Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. Water Air Soil Pollut. 225(8):1–20. doi:10.1007/s11270-014-2039-1.
  • Saffari M, Karimian N, Ronaghi A, Yasrebi J, Ghasemi-Fasaei R. 2015. Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. J Soil Sci Plant Nutr. 15:896–913.
  • Saffari M, Saffari VR, Aliabadi MM, Haghighi MJ, Moazallahi M. 2016. Influence of organic and inorganic amendments on cadmium sorption in a calcareous soil. Main Group Met Chem. 39(5–6):195–207. doi:10.1515/mgmc-2016-0028.
  • Saffari M, Vahidi H, Moosavirad SM. 2020. Effects of pristine and engineered biochars of pistachio-shell residues on cadmium behavior in a cadmium-spiked calcareous soil. Arch Agron Soil Sci. 66(7):942–956. doi:10.1080/03650340.2019.1648791.
  • Shabani H, Delavar MA, Taghavi Fardood S. 2019. Sorption of cd (II) ions by chitosan modified peanut shell biochar from aqueous solution. Adv Environ Technol. 5:203–211.
  • Shahbaz AK, Ramzani PMA, Saeed R, Turan V, Iqbal M, Lewińska K, Rahman MU, Saqib M, Tauqeer HM, Iqbal M. 2019. Effects of biochar and zeolite soil amendments with foliar proline spray on nickel immobilization, nutritional quality and nickel concentrations in wheat. Ecotoxicol Environ Saf. 173:182–191. doi:10.1016/j.ecoenv.2019.02.025.
  • Shaheen SM, Rinklebe J, Selim MH. 2015. Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. Int J Environ Sci Technol. 12(9):2765–2776. doi:10.1007/s13762-014-0713-x.
  • Shaheen SM, Shams MS, Khalifa MR, Mohamed A, Rinklebe J. 2017. Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol Environ Saf. 142:375–387. doi:10.1016/j.ecoenv.2017.04.026.
  • Shen Z, Zhang Y, McMillan O, Jin F, Al-Tabbaa A. 2017. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ Sci Pollut Res. 24(14):12809–12819. doi:10.1007/s11356-017-8847-2.
  • Singh J, Karwasra S, Singh M. 1988. Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India. Soil Sci. 146(5):359–366. doi:10.1097/00010694-198811000-00008.
  • Sumner ME, Miller WP. 1996. Cation exchange capacity and exchange coefficients. Methods of soil analysis: part 3 Chemical methods. Protein Science: A Publication of the Protein Society. 5(6):1201–1229. doi:10.1002/pro.5560050626.
  • Tauqeer HM, Fatima M, Rashid A, Shahbaz AK, Ramzani PMA, Farhad M, Basharat Z, Turan V, Iqbal M. 2021a. The current scenario and prospects of immobilization remediation technique for the management of heavy metals contaminated soils. In: Hasanuzzaman M, editor. Approaches to the remediation of inorganic pollutants. Singapore: Springer Singapore; p. 155–185.
  • Tauqeer HM, Karczewska A, Lewińska K, Fatima M, Khan SA, Farhad M, Turan V, Ramzani PMA, Iqbal M. 2021b. Environmental concerns associated with explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting range soils: prevailing issues, leading management practices, and future perspectives. In: Hasanuzzaman M Prasad, MNV. Handbook of Bioremediation. Amsterdam: Elsevier; p. 569–590.
  • Trakal L, Bingöl D, Pohořelý M, Hruška M, Komárek M. 2014. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications. Bioresour Technol. 171:442–451. doi:10.1016/j.biortech.2014.08.108.
  • Trakal L, Veselská V, Šafařík I, Vítková M, Číhalová S, Komárek M. 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour Technol. 203:318–324. doi:10.1016/j.biortech.2015.12.056.
  • Turan V. 2019. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol Environ Saf. 183:109594. doi:10.1016/j.ecoenv.2019.109594.
  • Turan V. 2020. Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere. 245:125611. doi:10.1016/j.chemosphere.2019.125611.
  • Turan V. 2021a. Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiol Plant. 173:418–429.
  • Turan V. 2021b. Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. Int J Phytoremediation. 24:1–11.
  • Turan V, Khan SA, Iqbal M, Ramzani PMA, Fatima M, Fatima M. 2018a. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol Environ Saf. 161:409–419. doi:10.1016/j.ecoenv.2018.05.082.
  • Turan V, Ramzani PMA, Ali Q, Abbas F, Iqbal M, Irum A, Khan WUD. 2018b. Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch Agron Soil Sci. 64(8):1053–1067. doi:10.1080/03650340.2017.1410542.
  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE. 2010. Immobilization of heavy metal ions (Cu II, Cd II, Ni II, and Pb II) by broiler litter-derived biochars in water and soil. J Agric Food Chem. 58(9):5538–5544. doi:10.1021/jf9044217.
  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM. 2011. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem. 59(6):2501–2510. doi:10.1021/jf104206c.
  • Violante A, Cozzolino V, Perelomov L, Caporale A, Pigna M. 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 10(3):268–292. doi:10.4067/S0718-95162010000100005.
  • Vithanage M, Rajapaksha AU, Zhang M, Thiele-Bruhn S, Lee SS, Ok YS. 2015. Acid-activated biochar increased sulfamethazine retention in soils. Environ Sci Pollut Res. 22(3):2175–2186. doi:10.1007/s11356-014-3434-2.
  • Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011:1–20. doi:10.5402/2011/402647.
  • Xu Y, Bai T, Yan Y, Zhao Y, Yuan L, Pan P, Jiang Z. 2020. Enhanced removal of hexavalent chromium by different acid-modified biochar derived from corn straw: behavior and mechanism. Water Sci Technol. 81(10):2270–2280. doi:10.2166/wst.2020.290.
  • Yong SK, Shrivastava M, Srivastava P, Kunhikrishnan A, Bolan N. 2015. Environmental applications of chitosan and its derivatives. Rev Environ Contam Toxicol. 233:1–43. doi:10.1007/978-3-319-10479-9_1.
  • Yong SK, Skinner WM, Bolan NS, Lombi E, Kunhikrishnan A, Ok YS. 2016. Sulfur crosslinks from thermal degradation of chitosan dithiocarbamate derivatives and thermodynamic study for sorption of copper and cadmium from aqueous system. Environ Sci Pollut Res. 23(2):1050–1059. doi:10.1007/s11356-015-5654-5.
  • Zhu C, Lang Y, Liu B, Zhao H. 2018. Ofloxacin adsorption on chitosan/biochar composite: kinetics, isotherms, and effects of solution chemistry. Polycycl Aromat Compd. 39(3):287–297. doi:10.1080/10406638.2018.1464039.
  • Zibaei Z, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S. 2020. Improvement of biochar capability in Cr immobilization via modification with chitosan and hematite and inoculation with Pseudomonas putida. Commun Soil Sci Plant Anal. 51(7):963–975. doi:10.1080/00103624.2020.1744624.
  • Zubair M, Ramzani PMA, Rasool B, Khan MA, Akhtar I, Turan V, Tauqeer HM, Farhad M, Khan SA, Iqbal J, et al. 2021. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). J Environ Manage. 284:112047. doi:10.1016/j.jenvman.2021.112047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.