231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rare microbial populations as sensitive indicators of bacterial community dissimilarity under different agricultural management practices

, , , , & ORCID Icon
Pages 1013-1026 | Received 22 May 2021, Accepted 01 Mar 2022, Published online: 08 Mar 2022

References

  • Alexandre J, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, et al. 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11:853–862. doi:10.1038/ismej.2016.174
  • Barberán A, Ramirez KS, Leff JW, Bradford MA, Wall DH, Fierer N. 2014. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol Lett. 17:794–802. doi:10.1111/ele.12282
  • Brown MV, Ostrowski M, Grzymski JJ, Lauro FM. 2014. A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genom. 15:17–28. doi:10.1016/j.margen.2014.03.002
  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, et al. 2018. Soil quality – a critical review. Soil Biol Biochem. 120:105–125. doi:10.1016/j.soilbio.2018.01.030
  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils. 48:489–499. doi:10.1007/s00374-012-0691-4
  • Chen Q, Dong Z, Hu H, Delgado-Baquerizo M, Ma Y-B, He J-Z. 2019. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol Biochem. 141:107686. doi:10.1016/j.soilbio.2019.107686
  • Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P. 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol. 12:2998–3006. doi:10.1111/j.1462-2920.2010.02277.x
  • Clarke K. 1993. Nonparametric multivariate analyses of changes in community structure. Austral Ecol. 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x
  • Cottrell M, Kirchman D. 2003. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Oceanogr. 48:168–178. doi:10.4319/lo.2003.48.1.0168
  • Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS. 2019. The global soil community and its influence on biogeochemistry. Science. 365. doi:10.1126/science.aav0550.
  • Dai T, Zhang Y, Tang Y, Bai Y, Tao Y, Huang B, Wen D. 2016. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay. FEMS Microbiol Ecol. 92:fiw150. doi:10.1093/femsec/fiw150
  • Davis K, Sangwan P, Janssen P. 2010. Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environ Microbiol. 13:798–805. doi:10.1111/j.1462-2920.2010.02384.x
  • Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, Lambers H, Neuhauser S, Gallardo A, García-Velázquez L, et al. 2019. Changes in belowground biodiversity during ecosystem development. PNAS. 116:6891. doi:10.1073/pnas.1818400116
  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 7:10541. doi:10.1038/ncomms10541
  • Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 10:996–998. doi:10.1038/nmeth.2604
  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194–2200. doi:10.1093/bioinformatics/btr381
  • Elshahed M, Youssef N, Spain A, Sheik C, Najar F, Sukharnikov L, Roe B, Davis J, Schloss P, Bailey V, et al. 2008. Novelty and uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol. 74:5422–5428. doi:10.1128/AEM.00410-08
  • Escalas A, Hale L, Voordeckers J, Yang Y, Firestone M, Alvarez‐Cohen L, Zhou J. 2019. Microbial functional diversity: from concepts to applications. Ecol Evol. 9:12000–12016. doi:10.1002/ece3.5670
  • Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology. 88:1354–1364. doi:10.1890/05-1839
  • Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T. 2016. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol. 7:1446. doi:10.3389/fmicb.2016.01446
  • Gamfeldt L, Roger F. 2017. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat Ecol Evol. 1:0168. doi:10.1038/s41559-017-0168
  • Geisseler D, Scow KM. 2014. Long-term effects of mineral fertilizers on soil microorganisms - A review. Soil Biol Biochem. 75:54–63. doi:10.1016/j.soilbio.2014.03.023
  • Giacometti C, Demyan MS, Cavani L, Marzadori C, Ciavatta C, Kandeler E. 2013. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Appl Soil Ecol. 64:32–48. doi:10.1016/j.apsoil.2012.10.002
  • Gillman GP. 1979. A proposed method for the measurement of exchange properties of highly weathered soils. Soil Res. 17:129–139. doi:10.1071/SR9790129
  • Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, Wallenstein MD, Brodie EL. 2011. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2:94. doi:10.3389/fmicb.2011.00094
  • Guo Z, Wan S, Hua K, Yin Y, Chu H, Wang D, Guo X. 2020. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Appl Soil Ecol. 149:103510. doi:10.1016/j.apsoil.2020.103510
  • Ho A, Di Lonardo P, Bodelier P. 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 93:fix006. doi:10.1093/femsec/fix006
  • Jiao S, Chen W, Wei G. 2017. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol. 26:5305–5317. doi:10.1111/mec.14218
  • Jiao S, Lu Y. 2020a. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Global Change Biol. 26:4506–4520. doi:10.1111/gcb.15130
  • Jiao S, Lu Y. 2020b. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environ Microbiol. 22:1052–1065. doi:10.1111/1462-2920.14815
  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, et al. 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11:853–862. doi:10.1038/ismej.2016.174
  • Kennedy AC. 1999. Bacterial diversity in agroecosystems. Agric Ecosyst Environ. 74:65–76. doi:10.1016/S0167-8809(99)00030-4
  • Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE. 2015. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun. 6:6936. doi:10.1038/ncomms7936
  • Lian T, Jin J, Wang G, Tang C, Yu Z, Li Y, Liu J, Zhang S, Liu X. 2017. The fate of soybean residue-carbon links to changes of bacterial community composition in Mollisols differing in soil organic carbon. Soil Biol Biochem. 109:50–58. doi:10.1016/j.soilbio.2017.01.026
  • Liang Y, Xiao X, Nuccio EE, Yuan M, Zhang N, Xue K, Cohan FM, Zhou J, Sun B. 2020. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ Microbiol. 22:1327–1340. doi:10.1111/1462-2920.14945
  • Liu K, Liu Y, Hu A, Wang F, Chen Y, Gu Z, Anslan S, Hou J. 2020. Different community assembly mechanisms underlie similar biogeography of bacteria and microeukaryotes in Tibetan lakes. FEMS Microbiol Ecol. 96:fiaa071. doi:10.1093/femsec/fiaa071
  • Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, Farjalla VF, Doebeli M. 2016. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol. 1:0015. doi:10.1038/s41559-016-0015
  • Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA, et al. 2018. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2:936–943. doi:10.1038/s41559-018-0519-1
  • Ludwig B, Geisseler D, Michel K, Joergensen RG, Schulz E, Merbach I, Raupp J, Rauber R, Hu K, Niu L, et al. 2011. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review. Agron Sustain Dev. 31:361–372. doi:10.1051/agro/2010030
  • Lupwayi NZ, Rice WA, Clayton GW. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem. 30:1733–1741. doi:10.1016/S0038-0717(98)00025-X
  • Lynch MDJ, Neufeld JD. 2015. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 13:217–229. doi:10.1038/nrmicro3400
  • Manoharan L, Kushwaha SK, Ahrén D, Hedlund K. 2017. Agricultural land use determines functional genetic diversity of soil microbial communities. Soil Biol Biochem. 115:423–432. doi:10.1016/j.soilbio.2017.09.011
  • Mohd Yusoff MZ, Hu A, Feng C, Maeda T, Shirai Y, Hassan MA, Yu CP. 2013. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresource Technol. 145:90–96. doi:10.1016/j.biortech.2013.03.003
  • Murugan R, Kumar S. 2013. Influence of long-term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil. Biol Fert Soils. 49:847–856. doi:10.1007/s00374-013-0779-5
  • Nelson DW, and Sommers L. 1982. Chemical and microbiological properties Page, AL, Miller, RH, and Keeney, DR eds. In: Methods of Soil Analysis Part 2. Madison, Wisconsin, USA: American Society of Agronomy; p. 570–571.
  • Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L, et al. 2011. Global patterns in the biogeography of bacterial taxa. Environ Microbiol. 13:135–144. doi:10.1111/j.1462-2920.2010.02315.x
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara RB, Simpson G, Solymos P, et al. 2020. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan
  • Olsen SR, Cole CV, Watanabe FS, Dean L. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington D.C. USA: Print Office; p. 1–19.
  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 30:3123–3124. doi:10.1093/bioinformatics/btu494
  • Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron P-A. 2013. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7:1609–1619. doi:10.1038/ismej.2013.34
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596. doi:10.1093/nar/gks1219/
  • Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang G. 2019. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 366:886. doi:10.1126/science.aay2832
  • Robertson GP, Vitousek PM. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Env Resour. 34:97–125. doi:10.1146/annurev.environ.032108.105046
  • Sanderson MA, Goslee SC, Soder KJ, Skinner RH, Tracy BF, Deak A. 2007. Plant species diversity, ecosystem function, and pasture management—a perspective. Can J Plant Sci. 87:479–487. doi:10.4141/P06-135
  • Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H. 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem. 57:204–211. doi:10.1016/j.soilbio.2012.07.013
  • Smith RG, Gross KL, Robertson GP. 2008. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems. 11:355–366. doi:10.1007/s10021-008-9124-5
  • Soil Survey Staff. 2010. Keys to soil taxonomy, 11th. Washington D.C. USA: Department of Agriculture Natural Resources Conservation Service. Print Office.939
  • Suleiman AKA, Manoeli L, Boldo JT, Pereira MG, Roesch LFW. 2013. Shifts in soil bacterial community after eight years of land-use change. Syst Appl Microbiol. 36:137–144. doi:10.1016/j.syapm.2012.10.007
  • Team RDC. 2011. R: a language and environment for statistical computing
  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 18:1–15. doi:10.1038/s41579-020-0412-1
  • Venter ZS, Jacobs K, Hawkins HJ. 2016. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia. 59:215–223. doi:10.1016/j.pedobi.2016.04.001
  • Wei M, Hu G, Wang H, Bai E, Lou Y, Zhang A, Zhuge Y. 2017. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. Eur J Soil Biol. 82:27–34. doi:10.1016/j.ejsobi.2017.08.002
  • Xue Y, Chen H, Yang JR, Liu M, Huang B, Yang J. 2018. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J. 12:2263–2277. doi:10.1038/s41396-018-0159-0
  • Xue M, Guo Z, Gu X, Gao H, Weng S, Zhou J, Gu D, Lu H, Zhou X. 2020. Rare rather than abundant microbial communities drive the effects of long-term greenhouse cultivation on ecosystem functions in subtropical agricultural soils. Sci Total Environ. 706:136004. doi:10.1016/j.scitotenv.2019.136004
  • Yin C, Jones KL, Peterson DE, Garrett KA, Hulbert SH, Paulitz TC. 2010. Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol Biochem. 42:2111–2118. doi:10.1016/j.soilbio.2010.08.006
  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology. 84:2042–2050. doi:10.1890/02-0433
  • Zhang J 2016. Package ‘spaa’. https://github.com/helixcn/spaa

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.