127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential effects of laccase on the formation and accumulation of Fe-OM complexes in coastal saline paddy soil under straw and nitrogen fertilization

, , &
Pages 1470-1481 | Received 21 Aug 2021, Accepted 29 Jun 2022, Published online: 08 Jul 2022

References

  • Badawy SA, Zayed BA, Bassiouni SMA, Mahdi AHA, Seleiman MF, Majrashi A, Ali EF, Seleiman MF. 2021. Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield, and yield components of rice (Oryza sativa L.) under salinity conditions. Plants. 10(8):1657. doi:10.3390/plants10081657.
  • Baes AU, Bloom PR. 1989. Diffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Sci Soc Am J. 53(3):695. doi:10.2136/sssaj1989.03615995005300030008x.
  • Bourbonnais R, Paice MG. 1990. Oxidation of non-phenolic substrates, an expanded role for laccase in lignin biodegradation. Febs Lett. 267(1):99–102. doi:10.1016/0014-5793(90)80298-W.
  • Bremner JM, Mulvaney CS. 1982. Nitrogen-total. Methods Soil Anal Chem Methods Part. 72:532–535.
  • Chen MM, Zhang SR, Liu L, Liu JG, Ding XD. 2022. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil. 474(1–2):233–249. doi:10.1007/s11104-022-05326-3.
  • Chen MM, Zhang SR, Liu L, Wu LP, Ding XD. 2021. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Till Res. 212:105060. doi:10.1016/j.still.2021.105060
  • Chen MM, Zhang SR, Wu LP, Fei C, Ding XD. 2020. Organic fertilization improves the availability and adsorptive capacity of phosphorus in saline-alkaline soils. J Soil Sci Plant Nut. 21(1):487–496. doi:10.1007/s42729-020-00377-w.
  • Christ S, Wubet T, Theuerl S, Herold N, Buscot F. 2011. Fungal communities in bulk soil and stone compartments of different forest and soil types as revealed by a barcoding ITS rDNA and a functional laccase encoding gene marker. Soil Biol Biochem. 43(6):1292–1299. doi:10.1016/j.soilbio.2011.02.022.
  • Curry KJ, Bennett RH, Mayer LM, Curry A, Abril M, Biesiot PM, Hulbert MH. 2007. Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochim Cosmochim Ac. 71(7):1709–1720. doi:10.1016/j.gca.2007.01.009.
  • Demisie W, Liu ZY, Zhang MK. 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena. 121:214–221. doi:10.1016/j.catena.2014.05.0202014.05.020.
  • Fansler SJ, Smith JL, Bolton H, Bailey VL. 2005. Distribution of two c cycle enzymes in soil aggregates of a prairie chronosequence. Biol Fert Soils. 42(1):17–23. doi:10.1007/s00374-005-0867-2.
  • Feng Y, Colosi LM, Gao S, Huang Q, Mao L. 2013. Transformation and removal of Tetrabromobisphenol a from water in the presence of natural organic matter via laccase-catalyzed reactions: reaction rates, products, and pathways. Environ Sci Technol. 47(2):1001–1008. doi:10.1021/es302680c.
  • Garg S, Jiang C, Waite TD. 2018. Impact of pH on Iron redox transformations in simulated freshwaters containing natural organic matter. Environ Sci Technol. 52(22):13184–13194. doi:10.1021/acs.est.8b03855.
  • Gillespie AW, Diochon A, Ma BL, Morrison MJ, Kellman L, Walley FL, Regier TZ, Chevrier D, Dynes JJ, Gregorich EG. 2014. Nitrogen input quality changes the biochemical composition of soil organic matter stabilized in the fine fraction: along-term study. Biogeochemistry. 117(2–3):337–350. doi:10.1007/s10533-013-9871-z.
  • Hafez EM, Hassan WHAE, Gaafar IA, Seleiman MF. 2015. Effect of gypsum application and irrigation intervals on clay saline-sodic soil characterization, rice water use efficiency, growth, and yield. J Agr Sci-Cambridgej. 7(12):208. doi:10.5539/jas.v7n12p208.
  • Huang T, Yang H, Huang C, Ju X. 2018. Effects of nitrogen management and straw return on soil organic carbon sequestration and aggregate-associated carbon. Soil Use Manage. 69(5):913–923. doi:10.1111/ejss.12700.
  • Huber D, Ortner A, Daxbacher A, Nyanhongo G, Bauer W, Guebitz GM. 2016. Influence of oxygen and mediators on Laccase-catalyzed polymerization of lignosulfonate. ACS Sustain Chem Eng. 4(10):5303–5310. doi:10.1021/acssuschemeng.6b00692.
  • Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L. 1992. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J. 56(6):1799–1806. doi:10.2136/sssaj1992.03615995005600.
  • Jiang PK, Xu QF, Xu ZH, Cao ZH. 2006. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecol Manag. 236(1):30–36. doi:10.1016/j.foreco.2006.06.010.
  • Kaiser K, Guggenberger G. 2007. Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. Eur J Soil Sci. 58(1):45–59. doi:10.1111/j.1365-2389.2006.00799.x.
  • Kang H, Kwon MJ, Kim S, Lee S, Jones TG, Johncock AC, Haraguchi A, Freeman C. 2018. Biologically driven DOC release from peatlands during recovery from acidification. Nat Commun. 9(1):1–7. doi:10.1038/s41467-018-06259-1.
  • Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F. 2008. Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland cambisol soil samples. Soil Biol Biochem. 40(3):638–648. doi:10.1016/j.soilbio.2007.09.013.
  • Kleber M, Eusterhues K, Keiluweit K, Mikutta C, Nico PS. 2015. Mineral-organic associations: formation, properties, and relevance in soil. Adv Agron. 130:1–140. doi:10.1016/bs.agron.2014.10.005
  • Lalonde K, Mucci A, Ouellet A, Gélinas Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature. 483(7388):198–200. doi:10.1038/nature10855.
  • Li RL, Zhang SR, Zhang M, Fei C, Ding XD. 2021. Phosphorus fractions and adsorption–desorption in aggregates in coastal saline-alkaline paddy soil with organic fertilizer application. J Soil Sediment. 21(9):3084–3097. doi:10.1007/s11368-021-02999-8.
  • Li XY. 1997. Soil chemistry and experimental guidelines. China agriculture press. Like multicopper oxidase genes in forest and grassland cambisol soil samples. Soil Biol Biochem. 40(3):638–648. doi:10.1016/j.soilbio.2007.09.013.
  • Liu DM, Zhang SR, Fei C, Ding XD. 2021. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils. Appl Soil Ecol. 168(18):104115. doi:10.1016/j.apsoil.2021.104115.
  • Mikutta R, Lorenz D, Guggenberger G, Haumaier L, Freund A. 2014. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: clues from arsenate batch adsorption. Geochim Cosmochim Ac. 144:258–276. doi:10.1016/j.gca.2014.08.026
  • Mu CC, Zhang F, Mu M, Chen X, Li ZL, Zhang TJ. 2020. Organic carbon stabilized by iron during slump deformation on the Qinghai-Tibetan plateau. Catena. 187:104282. doi:10.1016/j.catena.2019.104282
  • Parikh SJ, Goyne KW, Margenot AJ, Mukome FND, Calderón FJ. 2014. Soil chemical insights provided through vibrational spectroscopy. Adv Agron. 126:1–148. doi:10.1016/B978-0-12-800132-5.00001-8
  • Petr B. 2010. Fungal laccases occurrence and properties. Fems Microbiol Rev. 30(2):215–242. doi:10.1111/j.1574-4976.2005.00010.x.
  • Qiu QY, Wu LF, Ouyang Z, Li BB, Xu YY, Wu SS, Gregorich EG. 2016. Priming effect of maize residue and urea N on soil organic matter changes with time. Appl Soil Ecol. 100:65–74. doi:10.1016/j.apsoil.2015.11.016
  • Rezanezhad F, Price JS, Quinton WL, Lennartz B, Milojevic T, van Cappellen P. 2016. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem Geol. 429:75–84. doi:10.1016/j.chemgeo.2016.03.010
  • Riedel T, Biester H, Dittmar T. 2012. Molecular fractionation of dissolved organic matter with metal salts. Environ Sci Technol. 46(8):4419–4426. doi:10.1021/es203901u.
  • Seki M, Oikawa JI, Taguchi T, Ohnuki T, Muramatsu Y, Sakamoto K, Amachi S. 2013. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environ Sci Technol. 47(1):390–397. doi:10.1021/es303228n.
  • Seleiman MF, Alotaibi MA, Alhammad BA, Alharbi BM, Refay Y, Badawy SA. 2020. Effects of ZnO Nanoparticles and biochar of rice straw and cow manure on characteristics of contaminated soil and sunflower productivity, oil quality, and heavy metals uptake. Agron. 10(6):790. doi:10.3390/agronomy10060790.
  • Seleiman R, Al-Suhaibani A-A, El-Hendawy H. 2019. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agron. 9(10):637. doi:10.3390/agronomy9100637.
  • Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem. 42(3):391–404. doi:10.1016/j.soilbio.2009.10.014.
  • Varadachari C, Ghosh K. 1984. On humus formation. Plant Soil. 77(2–3):305–313. doi:10.1007/BF02182933.
  • Veres Z, Kotroczó Z, Fekete I, Tóth JA, Lajtha K, Townsend K, Tóthmérész B. 2015. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Appl Soil Ecol. 92:18–23. doi:10.1016/j.apsoil.2015.03.006
  • Wagai R, Mayer LM. 2007. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Ac. 71(1):25–35. doi:10.1016/j.gca.2006.08.047.
  • Wang Y, Wang H, He JS, Feng X. 2017. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat Commun. 8(1):15972. doi:10.1038/ncomms15972.
  • Wu LP, Wei CB, Zhang SR, Wang YD, Kuzyakov Y, Ding XD. 2019. Mgo-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. J Clean Prod. 235:901–909. doi:10.1016/j.jclepro.2019.07.043
  • Wu LP, Zhang SR, Wang J, Ding XD. 2020. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: adsorption, column and field tests. Environ Pollut. 261:114223. doi:10.1016/j.envpol.2020.114223
  • Yang L, Song M, Zhu AX, Qin C, Zhou C, Qi F, Li X, Chen Z, Gao B. 2019. Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables. Geoderma. 340:289–302. doi:10.1016/j.geoderma.2019.01.015
  • Zhao YP, Xiang W, Ma M, Zhang XZ, Bao ZY, Xie SY, Yan S. 2019. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration? Plant Soil. 443(1–2):575–590. doi:10.1007/s11104-019-04245-0.
  • Zhao YP, Xiang W, Zhang XZ, Xie SY, Yan S, Wu CX, Liu Y. 2020. Mechanistic study on laccase-mediated formation of Fe-OM associations in peatlands. Geoderma. 375:114502. doi:10.1016/j.geoderma.2020.114502

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.