178
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pyrolytic synthesis and performance efficacy comparison of biochar-supported nanoscale zero-valent iron on soil polluted with toxic metals

, , , , , , , , & show all
Pages 2249-2266 | Received 05 May 2022, Accepted 07 Nov 2022, Published online: 21 Nov 2022

References

  • Aborisade MA, Gbadebo AM, Adedeji OH, Okeyode IC, Ajayi OA. 2017. Excess lifetime cancer risk and radiation pollution hazard indices in rocks and soil of some selected mining sites in Nasarawa State, Nigeria. AEgean J Environ Sci. 3(1):1–18. https://www.env.aegean.gr/aegean-journal-of-environmental-sciences/
  • Ahmad Z, Gao B, Mosa A, Yu H, Yin X, Bashir A, Ghoveisi H, Wang S. 2018. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J Clean Prod. 180:437–449. doi:10.1016/j.jclepro.2018.01.133.
  • Almaroai YA, Usman ARA, Ahmad M, Moon DH, Cho JS, Joo YK, Jeon C, Lee SS, Ok YS. 2014. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ Earth Sci. 71(3):1289–1296. doi:10.1007/s12665-013-2533-6.
  • Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. 2018. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 6(4):65. doi:10.3390/toxics6040065.
  • Assessment E. 2011. Exposure Factors Handbook : 2011 Edition. (September).
  • Baragano D, Forjan R, Fernandez B, Ayala J, Afif E, JLRJLR G, Baragaño D, Forján R, Fernández B, Ayala J, et al. 2020a. Application of biochar, compost and ZVI nanoparticles for the remediation of as. Cu, Pb and Zn Polluted Soil. Environ Sci Pollut Res. 27(27):33681–33691. doi:10.1007/s11356-020-09586-3.
  • Baragano D, Gallego JLR, Baleriola G, Forjan R 2020b. Effects of Different in situ Remediation Strategies for an As-Polluted Soil on Human Health Risk, Soil Properties, and Vegetation. Agronomy-Basel. 10(6).
  • Basha CA, Somasundaram M, Kannadasan T, Lee CW. 2011. Heavy metals removal from copper smelting effluent using electrochemical filter press cells. Chem Eng J. 171(2):563–571. doi:10.1016/j.cej.2011.04.031.
  • Bian P, Zhang J, Zhang C, Huang H, Rong Q, Wu H, Li X, Xu M, Liu Y, Ren S. 2018. Effects of silk-worm excrement biochar combined with different iron-based materials on the speciation of cadmium and lead in soil. Appl Sci. 8(10):1999. doi:10.3390/app8101999.
  • Cao L, Ding Q, Liu M, Lin H, Yang D-P. 2021. Biochar-supported Cu2+/Cu+Composite as an electrochemical ultrasensitive interface for ractopamine detection. ACS Appl Bio Mater. 4(2):1424–1431. doi:10.1021/acsabm.0c01314.
  • Chen Z, Lu Z, Zhang Y, Li B, Chen C, Shen K. 2021. Effects of biochars combined with ferrous sulfate and pig manure on the bioavailability of Cd and potential phytotoxicity for wheat in an alkaline contaminated soil. Sci Total Environ. 753:141832. doi:10.1016/j.scitotenv.2020.141832.
  • Cui L, Noerpel MR, Scheckel KG, Ippolito JA. 2019. Wheat straw biochar reduces environmental cadmium bioavailability. Environ Int. 126:69–75. doi:10.1016/j.envint.2019.02.022.
  • Deng J, Dong H, Zhang C, Jiang Z, Cheng Y, Hou K, Zhang L, Fan C. 2018. Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine. Sep Purif Technol. 202:130–137. doi:10.1016/j.seppur.2018.03.048.
  • Dinghua P, Wu B, Tan H, Hou S, Liu M, Tang H, Yu J, Xu H. 2019. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. Chemosphere. 228:44–53.
  • Du P, Chang J, Zhao H, Liu W, Dang C, Tong M, Ni J, Zhang B. 2018. Sea-buckthorn-like MnO2 decorated titanate nanotubes with oxidation property and photocatalytic activity for enhanced degradation of 17β-estradiol under solar light. ACS Appl Energy Mater. 1(5):2123–2133. doi:10.1021/acsaem.8b00197.
  • El-Azeem SAM A, Ahmad M, Usman ARA, Kim KR, Oh SE, Lee SS, Ok YS. 2013. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials. Environ Earth Sci. 70(7):3411–3420. doi:10.1007/s12665-013-2410-3.
  • Elbehiry F, Elbasiouny H, Ali R, Brevik EC. 2020. Enhanced Immobilization and phytoremediation of heavy metals in landfill contaminated soils. Water, Air, Soil Pollut. 231(5). doi:10.1007/s11270-020-04493-2.
  • Fan J, Chen X, Xu Z, Xu X, Zhao L, Qiu H, Cao X. 2020. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation. J Hazard Mater. 398. doi:10.1016/j.jhazmat.2020.122901.
  • Fei Y, Liu C, Li F, Chen M, Tong H, Liu C, Liao C. 2017. Combined modification of clay with sulfhydryl and iron: toxicity alleviation in Cr-contaminated soils for mustard (Brassica juncea) growth. J Geochemical Explor. 176:2–8. doi:10.1016/j.gexplo.2016.10.014.
  • Gil-Díaz M, López LF, Alonso J, Lobo MC. 2018. Comparison of nanoscale zero-valent iron, compost, and phosphate for Pb immobilization in an acidic soil. Water Air Soil Pollut. 229(10). doi:10.1007/s11270-018-3972-1.
  • Guru PSS, Dash S. 2014. Sorption on eggshell waste - A review on ultrastructure, biomineralization and other applications. Adv Colloid Interface Sci. 209:49–67. doi:10.1016/j.cis.2013.12.013.
  • Han L, Xue S, Zhao S, Yan J, Qian L, Chen M. 2015. Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS One. 10(7).
  • He Q, Luo Y, Feng Y, Xie K, Zhang K, Shen S, Luo Y, Wang F. 2020. Biochar produced from tobacco stalks, eggshells, and Mg for phosphate adsorption from a wide range of pH aqueous solutions. Mater Res Express. 7(11):115603. doi:10.1088/2053-1591/abcb3d.
  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M, et al. 2017. Effects of calcium at toxic concentrations of cadmium in plants. Planta. 245(5):863–873. doi:10.1007/s00425-017-2664-1.
  • Huang J, Lai Y, Weng B, Ye J, Liu C, Wang Y. 2020. Effect of peanut shell biochar on the bacterial community structure in cadmium-containing vegetable soil. Chinese J Appl Environ Biol. 26(5):1115–1128.
  • Hu W, Huang B, He Y, Kalkhajeh YK. 2016. Assessment of potential health risk of heavy metals in soils from a rapidly developing region of China. Hum Ecol Risk Assess. 22(1):211–225. doi:10.1080/10807039.2015.1057102.
  • Irshad MK, Noman A, Alhaithloul HAS, Adeel M, Rui Y, Shah T, Zhu S, Shang J. 2020. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Sci Total Environ. 717:137086. doi:10.1016/j.scitotenv.2020.137086.
  • Islam MS, ASIA M, Chen Y, Weng L, Ma J, Arafat MY, Khan ZH, Li Y. 2021b. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Sci Total Environ. 785:147163. doi:10.1016/j.scitotenv.2021.147163.
  • Islam MS, Chen Y, Weng L, Ma J, Khan ZH, Liao Z, ASIA M, Li Y. 2021a. Watering techniques and zero-valent iron biochar pH effects on As and Cd concentrations in rice rhizosphere soils, tissues and yield. J Environ Sci (China). 100:144–157. doi:10.1016/j.jes.2020.07.002.
  • Kastury F, Placitu S, Boland J, Karna RR, Scheckel KG, Smith E, Juhasz AL. 2019. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Env Int. 131:104967. doi:10.1016/j.envint.2019.104967.
  • Kong F, Chen Y, Huang L, Yang Z, Zhu K. 2021. Human health risk visualization of potentially toxic elements in farmland soil: a combined method of source and probability. Ecotoxicol Environ Saf. 211:111922. doi:10.1016/j.ecoenv.2021.111922.
  • Lebrun M, Miard F, Nandillon R, Morabito D, Bourgerie S. 2021a. Biochar application rate: improving soil fertility and linum usitatissimum growth on an arsenic and lead contaminated technosol. Int J Environ Res. 15(1):125–134. doi:10.1007/s41742-020-00302-0.
  • Lebrun M, Nandillon R, Miard F, Le Forestier L, Morabito D, Bourgerie S. 2021b. Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. Environ Geochem Health. 43(4):1491–1505. doi:10.1007/s10653-020-00592-5.
  • Lee CH, Lee DK, Ali MA, Kim PJ. 2008. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Manag. 28(12):2702–2708. doi:10.1016/j.wasman.2007.12.005.
  • Lian F, Liu X, Gao M, Li H, Qiu W, Song Z. 2020. Effects of Fe-Mn-Ce oxide–modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.). Environ Sci Pollut Res. 27(15):18196–18207. doi:10.1007/s11356-020-08355-6.
  • Li K, Gu Y, Li M, Zhao L, Ding J, Lun Z, Tian W. 2018. Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China. Int Biodeterior Biodegrad. 128:148–154. doi:10.1016/j.ibiod.2017.03.026.
  • Lim JE, Ahmad M, Usman ARA, Lee SS, Jeon WT, Oh SE, Yang JE, Ok YS. 2013. Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ Earth Sci. 69(1):11–20. doi:10.1007/s12665-012-1929-z.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for Zinc, Iron, Manganese, and Copper. Soil Sci Soc Am J. 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Liu K, Li F, Tian Q, Nie C, Ma Y, Zhu Z, Fang L, Huang Y, Liu S. 2021a. A highly porous animal bone-derived char with a superiority of promoting nZVI for Cr(VI) sequestration in agricultural soils. J Environ Sci (China). 104:27–39. doi:10.1016/j.jes.2020.11.031.
  • Liu S-J, Liu Y-G, Tan X-F, Zeng G-M, Zhou Y-H, Liu S-B, Yin Z-H, Jiang L-H, M-F L, Wen J. 2018b. The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere. 208:655–664. doi:10.1016/j.chemosphere.2018.06.023.
  • Liu Q, Sheng Y, Wang W, Liu X. 2021b. Efficacy and microbial responses of biochar-nanoscale zero-valent during in-situ remediation of Cd-contaminated sediment. J Clean Prod. 287:125076. doi:10.1016/j.jclepro.2020.125076.
  • Liu Q, Sheng Y, Wang W, Li C, Zhao G. 2020a. Remediation and its biological responses of Cd contaminated sediments using biochar and minerals with nanoscale zero-valent iron loading. Sci Total Environ. 713:136650. doi:10.1016/j.scitotenv.2020.136650.
  • Liu Q, Wang F, Meng F, Jiang L, Li G, Zhou R. 2018a. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: use of a modified ecological risk index. Mar Pollut Bull. 126:293–303. doi:10.1016/j.marpolbul.2017.11.017.
  • Liu X, Yang L, Zhao H, Wang W. 2020b. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Sci Total Environ. 708:134479. doi:10.1016/j.scitotenv.2019.134479.
  • Li Z, Wang L, Wu J, Xu Y, Wang F, Tang X, Xu J, Ok YS, Meng J, Liu X. 2020c. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: encapsulation mechanisms and indigenous microbial responses. Environ Pollut. 260:114098. doi:10.1016/j.envpol.2020.114098.
  • Li X, Wang C, Zhang J, Liu J, Liu B, Chen G. 2020b. Preparation and application of magnetic biochar in water treatment: a critical review. Sci Total Environ. 711:134847. doi:10.1016/j.scitotenv.2019.134847.
  • Li P, Yu J, Huangfu Z, Chang J, Zhong C, Ding P. 2020a. Applying modified biochar with nZVI/nFe3O4 to immobilize Pb in contaminated soil. Environ Sci Pollut Res. 27(19):24495–24506. doi:10.1007/s11356-020-08458-0.
  • Luo L, Ma C, Ma Y, Zhang S, Lv J, Cui M. 2011. New insights into the sorption mechanism of cadmium on red mud. Environ Pollut. 159(5):1108–1113. doi:10.1016/j.envpol.2011.02.019.
  • Maiz I, Esnaola MV, Millán E. 1997. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci Total Environ. 206(2–3):107–115. doi:10.1016/S0048-9697(97)00223-4.
  • Mamun S, Saha S, Ferdush J, Tusher TR, Abu-Sharif M, Alam MF, Balks MR, Parveen Z. 2021. Cadmium contamination in agricultural soils of Bangladesh and management by application of organic amendments: evaluation of field assessment and pot experiments. Environ Geochem Health. 43(9):3557–3582. doi:10.1007/s10653-021-00829-x.
  • Mehmood A, Aslam Mirza M, Aziz Choudhary M, Kim K-H, Raza W, Raza N, Soo Lee S, Zhang M, Lee J-H, Sarfraz M. 2019. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environ Res. 168:382–388. doi:10.1016/j.envres.2018.09.020.
  • Mele E, Donner E, Juhasz AL, Brunetti G, Smith E, Betts AR, Castaldi P, Deiana S, Scheckel KG, Lombi E. 2015. In situ fixation of metal(loid)s in contaminated soils: a comparison of conventional, opportunistic, and engineered soil amendments. Environ Sci Technol. 49(22):13501–13509. doi:10.1021/acs.est.5b01356.
  • Miao X, Miao D, Hao Y, Xie Z, Zou S. 2019. Potential health risks associated to heavy metal contamination of soils in the Yellow River Delta, China. J Coast Conserv. 23(3):643–655. doi:10.1007/s11852-019-00695-x.
  • Mohammadi A, Mansour SN, Najafi ML, Toolabi A, Abdolahnejad A, Faraji M, Miri M. 2022. Probabilistic risk assessment of soil contamination related to agricultural and industrial activities. Environ Res. 203:111837. doi:10.1016/j.envres.2021.111837.
  • Mohammadi S, Taher MA, Beitollahi H, Naghizadeh M. 2019. Sensitive voltammetric determination of cadmium at a carbon nanotubes/Fe3O4/eggshell composites modified carbon paste electrode. Environ Nanotechnol Monit Manag. 12.
  • Oba BT, Zheng X, Aborisade MA, Battamo AY, Kumar A, Kavwenje S, Liu J, Sun P, Yang Y, Zhao L. 2021a. Environmental opportunities and challenges of utilizing unactivated calcium peroxide to treat soils co-contaminated with mixed chlorinated organic compounds. Environ Pollut. 291:118239. doi:10.1016/j.envpol.2021.118239.
  • Oba BT, Zheng X, Aborisade MA, Liu J, Yohannes A, Kavwenje S, Sun P, Yang Y, Zhao L. 2021b. Remediation of trichloroethylene contaminated soil by unactivated peroxymonosulfate: implication on selected soil characteristics. J Environ Manage. 285.
  • Ok YS, Lee SS, Jeon WT, Oh SE, Usman ARA, Moon DH. 2011. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ Geochem Health. 33(SUPPL. 1):31–39. doi:10.1007/s10653-010-9362-2.
  • Pan H, Yang X, Chen H, Sarkar B, Bolan N, Shaheen SM, Wu F, Che L, Ma Y, Rinklebe J, et al. 2021. Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil. Sci Total Environ. 763:144218. doi:10.1016/j.scitotenv.2020.144218.
  • Peng D, Wu B, Tan H, Hou S, Liu M, Tang H, Yu J, Xu H. 2019. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. Chemosphere. 228:44–53. doi:10.1016/j.chemosphere.2019.04.106.
  • Praveena SM, Pradhan B, Aris AZ. 2018. Assessment of bioavailability and human health exposure risk to heavy metals in surface soils (Klang district, Malaysia). Toxin Rev. 37(3):196–205. doi:10.1080/15569543.2017.1350193.
  • Qing X, Yutong Z, Shenggao L. 2015. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Saf. 120:377–385. doi:10.1016/j.ecoenv.2015.06.019.
  • Remonsellez F, Zarrias N, Bol R, Fuentes B. 2017. Characterization and low-cost treatment of an industrial arid soil polluted with lead sulfide in northern Chile. Environ Earth Sci. 76(7). doi:10.1007/s12665-017-6617-6.
  • Risk, E. 2009. Application of Bioavailability in the Assessment of Human Health Hazards and Cancer Risk. Ohio EPA Division of Environmental Response. August:1–12.
  • Scheckel KG, Ryan JA, Allen D, Lescano NV. 2005. Determining speciation of Pb in phosphate-amended soils: method limitations. Sci Total Environ. 350(1–3):261–272. doi:10.1016/j.scitotenv.2005.01.020.
  • Smith E, Kempson IM, Juhasz AL, Weber J, Rofe A, Gancarz D, Naidu R, McLaren RG, Gräfe M. 2011. In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environ Sci Technol. 45(14):6145–6152. doi:10.1021/es200653k.
  • Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D. 2016. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J Hazard Mater. 318:533–540. doi:10.1016/j.jhazmat.2016.07.039.
  • Sun L, Carey M, Yang L, Chen L-D, Li S-J, Zhao F-K, Zhu Y-G, Meharg C, Meharg AA. 2019. Source Identification of Trace Elements in Peri-urban Soils in Eastern China. Expo Heal. 11(3):195–207. doi:10.1007/s12403-018-0290-1.
  • Taneez M, Hurel C. 2019. A review on the potential uses of red mud as amendment for pollution control in environmental media. Environ Sci Pollut Res. 26(22):22106–22125. doi:10.1007/s11356-019-05576-2.
  • Trakal L, Vítková M, Hudcová B, Beesley L, Komárek M. 2019. Chapter 7 - biochar and its composites for metal(loid) removal from aqueous solutions. In: Ok YS, Tsang DCW, Bolan N, Novak JM, editors. Biochar from biomass waste. [place unknown]: elsevier. p. 113–141.
  • Udeigwe TK, Eze PN, Teboh JM, Stietiya MH. 2011. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Environ Int. 37(1):258–267. doi:10.1016/j.envint.2010.08.008.
  • United State Environmental Protection Agency (USEPA). 1992. Toxicity characteristic leaching procedure. Method 1311.(July. 1992:1–35.
  • United State Environmental Protection Agency (USEPA). 2001. Risk assessment guidance for superfund (RAGS) volume III - part A: process for conducting probabilistic risk assessment, appendix B. Off Emerg Remedial Response US Environ Prot Agency. III(December):1–385.
  • United State Environmental Protection Agency (USEPA). 2007. Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. Environ Prot.(May).
  • United State Environmental Protection Agency (USEPA). 2017. Standard operating procedure for an in vitro bioaccessibility assay for lead and arsenic in Soil.:21.
  • Wang Y, Cai Z, Sheng S, Pan F, Chen F, Fu J. 2020. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Sci Total Environ. 701:134736. doi:10.1016/j.scitotenv.2019.134736.
  • Wang H-Y, Chen P, Zhu Y-G, Cen K, Sun G-X. 2019a. Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil. Environ Sci Pollut Res. 26(9):8575–8584. doi:10.1007/s11356-019-04315-x.
  • Wang H, Gao B, Fang J, Ok YS, Xue Y, Yang K, Cao X. 2018. Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecol Eng. 121:124–129. doi:10.1016/j.ecoleng.2017.06.029.
  • Wang S, Zhao M, Zhou M, Li YC, Wang J, Gao B, Sato S, Feng K, Yin W, Igalavithana AD, et al. 2019b. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review. J Hazard Mater. 373:820–834. doi:10.1016/j.jhazmat.2019.03.080.
  • Xu Y, Qi F, Bai T, Yan Y, Wu C, An Z, Luo S, Huang Z, Xie P. 2019. A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars. J Hazard Mater. 380:120870. doi:10.1016/j.jhazmat.2019.120870.
  • Yang X, Tsibart A, Nam H, Hur J, El-Naggar A, Tack FMG, Wang C-H, Lee YH, Tsang DCW, Ok YS. 2019. Effect of gasification biochar application on soil quality: trace metal behavior, microbial community, and soil dissolved organic matter. J Hazard Mater. 365:684–694. doi:10.1016/j.jhazmat.2018.11.042.
  • Yang D, Wang L, Li Z, Tang X, He M, Yang S, Liu X, Xu J. 2020. Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems. Sci Total Environ. 708:134823. doi:10.1016/j.scitotenv.2019.134823.
  • Yang D, Yang S, Wang L, Xu J, Liu X. 2021. Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation: insights on availability, bioaccumulation and health risk. Environ Pollut. 290:118054. doi:10.1016/j.envpol.2021.118054.
  • Y-X Y, Pan L, Son M-K, Mayer MT, Zhang W-D, Hagfeldt A, Luo J, Grätzel M. 2018. Solution-processed Cu2S photocathodes for photoelectrochemical water splitting. ACS Energy Lett. 3(4):760–766. doi:10.1021/acsenergylett.7b01326.
  • Zeng S, Ma J, Yang Y, Zhang S, Liu G-J, Chen F. 2019. Spatial assessment of farmland soil pollution and its potential human health risks in China. Sci Total Environ. 687:642–653. doi:10.1016/j.scitotenv.2019.05.291.
  • Zhu Y, Ma J, Chen F, Yu R, Hu G, Zhang S. 2020. Remediation of soil polluted with cd in a postmining area using thiourea-modified biochar. Int J Environ Res Public Health. 17(20):1–14. doi:10.3390/ijerph17207654.
  • Zuo W-Q, Chen C, Cui H-J, Fu M-L. 2017. Enhanced removal of Cd(ii) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar. RSC Adv. 7(26):16238–16243. doi:10.1039/C7RA00324B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.