105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sugarcane straw management by inoculation of microbial consortia and its impact on short-term N source and amelioration of ratoon sugarcane yield

&
Pages 2267-2285 | Received 01 Jun 2022, Accepted 07 Nov 2022, Published online: 17 Nov 2022

References

  • Alef K, Nannipieri P. 1995. β-glucosidase activity. In: Alef K, Nannipieri P, editors. Methods in applied soil microbiology and biochemistry. London: Academic Press; p. 350–352.
  • Amato MA, Ladd JN. 1988. Assay for microbial biomass based on ninhydrin reactive nitrogen in extracts of fumigated soil. Soil Biol Biochem. 20(1):107–114. doi:10.1016/0038-0717(88)90134-4.
  • Berg B, McClaugherty C. 2008. Plant litter, decomposition, humus formation, carbon sequestration. Berlin Heidelberg: Springer-Verlag.
  • Blackburn F. 1984. Sugar-Cane. London (UK): Longman.
  • Boopathy R, Beary T, Templet PJ. 2001. Accelerated decomposition of sugarcane crop residue using a fungal-bacterial consortium. Bioresour Technol. 79(1):29–33. doi:10.1016/S0960-8524(01)00034-7.
  • Bray RA, Kurtz LT. 1954. Determination of total organic and available form of phosphorus in soil. Soil Sci. 59(1):39–45. doi:10.1097/00010694-194501000-00006.
  • Butphu S, Rasche F, Cadisch G, Kaewpradit W. 2020. Eucalyptus biochar application enhances Ca uptake of upland rice, soil available P, exchangeable K, yield, and N use efficiency of sugarcane in a crop rotation system. J Plant Nutr Soil Sci. 183:58–68. doi:10.1002/jpln.201900171.
  • Cherubin MR, Bordonal RO, Castioni GA, Guimarães EM, Lisboa IP, Moraes LAA, Menandro LMS, Tenelli S, Cerri CEP, Karlen DL, et al. 2021. Soil health response to sugarcane straw removal in Brazil. Ind Crops Prod. 163:1–12. doi:10.1016/j.indcrop.2021.113315.
  • de Aquino Gs, de Conti Medina C, da Costa Dc, Shahab M, Santiago AD, de Aquino GS, da Costa DC. 2017. Sugarcane straw management and its impact on production and development of ratoons. Ind Crops Prod. 102:58–64. doi:10.1016/j.indcrop.2017.03.018.
  • de Castro Saq, Otto R, Sánchez CEB, Tenelli S, Sermarini RA, Trivelin PCO. 2021. Sugarcane straw preservation results in limited immobilization and improves crop N-fertilizer recovery. Biomass Bioenerg. 10–1441.
  • de Oliveira App, Thorburn PJ, Biggs JS, Lima E, Dos Anjos LHC, Lhcd A, Zanotti NÉ, Né Z. 2016. The response of sugarcane to trash retention and nitrogen in the Brazilian coastal tablelands: a simulation study. Expl Agric. 52(1):69–86. doi:10.1017/S0014479714000568.
  • Dietrich G, Sauvadet M, Recous S, Redin M, Pfeifer IC, Garlet CM, Bazzo H, Giacomini SJ. 2017. Sugarcane mulch C and N dynamics during decomposition under different rates of trash removal. Agric Ecosyst Environ. 243:123–131. doi:10.1016/j.agee.2017.04.013.
  • Food and Agriculture Organization of the United Nations (FAO), 2019. FAOSTATS. [accessed 2021 Apr 20]. https://www.fao.org/faostat/en/#data/QC.
  • Fortes C, Trivelin PCO, Vitti AC. 2012. Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass Bioenerg. 42:189–198. doi:10.1016/j.biombioe.2012.03.011.
  • Graham MH, Haynes RJ. 2005. Organic matter accumulation and fertilizer-induced acidification interact to affect soil microbial and enzyme activity on a long-term sugarcane management experiment. Biol Fertil Soils. 41(4):249–256. doi:10.1007/s00374-005-0830-2.
  • Hemwong S, Cadisch G, Toomsan B, Limpinuntana V, Vityakon P, Patanothai A. 2008. Dynamics of residue decomposition and N2 fixation of grain legumes upon sugarcane residue retention as an alternative to burning. Soil Till Res. 99(1):84–97. doi:10.1016/j.still.2008.01.003.
  • Hemwong S, Toomsan B, Cadish G, Limpinuntana V, Vityakon P, Patanothai A. 2009. Sugarcane residue management and grain legume crop effects on N dynamics, N losses and growth of sugarcane. Nutr Cycl Agroecosyst. 83(2):135–151. doi:10.1007/s10705-008-9209-8.
  • Hendel B, Sinsabaugh RL, Marxsen J. 2005. Lignin-degrading enzymes: phenoloxidase and peroxidase. In: Graca MAS, Bȁrlocher F, Gessner MO, editors. Methods to study litter decomposition: a practical guide. Dordrecht: Springer; p. 273–277.
  • Jackson ML. 1967. Soil chemical analysis: nitrogen determination for soils and plant tissue. New Delhi: Prentice-Hall of Hall of India Private Limited.
  • Land Development Department, 2016. Decomposing microorganism. [accessed 2018 Dec 13]. https://www.ldd.go.th/menu_5wonder/PDF/PD1.pdf.
  • Meier EA, Thorburn PJ. 2016. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments. Front Plant Sci. 7:1–14. doi:10.3389/fpls.2016.01017.
  • Meier EA, Thorburn PJ, Wegener MK, Basford KE. 2006. The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland. Nutr Cycl Agroecosyst. 75(1–3):101–114. doi:10.1007/s10705-006-9015-0.
  • Muhammad W, Vaughan SM, Dalal RC, Menzies NW. 2011. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biol Fertil Soils. 47(1):15–23. doi:10.1007/s00374-010-0497-1.
  • Office of Agricultural Economics. 2017. Agricultural production: sugarcane. Bangkok: Thailand:Office of Agricultural Economics.
  • Phukongchai W, Kaewpradit W, Rasche F. 2022. Inoculation of cellulolytic and ligninolytic microorganisms accelerates decomposition of high C/N and cellulose rich sugarcane straw in tropical sandy soils. Appl Soil Ecol. 172(1):104355. doi:10.1016/j.apsoil.2021.104355.
  • Pimentel LG, Cherubin MR, Oliveira DMS, Cerri CEP, Cerri CC. 2019. Decomposition of sugarcane straw: basis for management decisions for bioenergy production. Biomass Bioenerg. 122:133–144. doi:10.1016/j.biombioe.2019.01.027.
  • Pratt PE. 1965. Potassium. In: Black CA, editor. Method of soil analysis Part II. American society of agronomy. USA: Incorporation Medison Wisconsin; p. 1022–1030.
  • Rasche L, Diego RSD. 2020. Pros and cons of sugarcane straw recovery in São Paulo. Bioenerg Res. 13:147–156. doi:10.1007/s12155-019-10078-7.
  • Schinner F, Von Mersi W. 1990. Xylanase-, CM-cellulase-, and invertase activity in soil: an improved method. Soil Biol Biochem. 22:511–515. doi:10.1016/0038-0717(90)90187-5.
  • Schollerger CJ, Simmon RH. 1945. Determination of exchange capacity and exchangeable bases in soil ammonium acetate method. Soil Sci. 59:39–45.
  • Shen Y, Cheng R, Xiao W, Yang S, Guo Y, Wang N, Zeng L, Lei L, Wang X. 2018. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci Rep. 8:1–9. doi:10.1038/s41598-017-17765-5.
  • Šimon T, Cerhanová D, Mikanová O. 2011. The effect of site characteristics and farming practices on soil organic matter in long-term field experiments in the Czech Republic. Arch Agron Soil Sci. 1:1–12.
  • Soil Survey Staff. 2010. Key to soil taxonomy. 11th. Washington (DC): USDA-Natural Resources Conservation Service.
  • Souza RA, Telles TS, Machado W, Hungria M, Filho JT, Gumarães MF. 2012. Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agric Ecosyst Environ. 155:1–6. doi:10.1016/j.agee.2012.03.012.
  • Surendran U, Ramesh V, Jayakumar M, Marimuthu S, Sridevi G. 2016. Improved sugarcane productivity with tillage and trash management practices in semi arid tropical agro ecosystem in India. Soil Till Res. 158:10–21. doi:10.1016/j.still.2015.10.009.
  • Tayade AS, Geetha P, Anusha S, Dhanapal R, Hare K. 2017. Effect of green cane trash blanketing and microbial consortia application on soil compaction and productivity of mechanically harvested sugarcane ratoon crops. J Sugarcane Res. 7:112–120.
  • Thawaro N, Toomsan B, Kaewpradit W. 2017. Sweet sorghum and upland rice: alternative preceding crops to ameliorate ethanol production and soil sustainability within the sugarcane cropping system. Sugar Tech. 19:64–71. doi:10.1007/s12355-016-0437-y.
  • Thomas GW. 1996. Soil pH and soil acidity. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods, Book Series No. 5, SSSA and ASA,Madison (WI); p. 475–489.
  • Tian Z, Ge Y, Zhu Q, Yu J, Zhou Q, Cai J, Jian D, Cao W, Dai T. 2018. Soil nitrogen balance and nitrogen utilization of winter wheat affected by straw management and nitrogen application in the Yangtze river basin of China. Arch Agron Soil Sci. 65:1–15. doi:10.1080/03650340.2018.1479743.
  • Trivelin PCO, Franco HCJ, Otto R, Ferreira DA, Vitti AC, Fortes C, Faroni CE, Oliveira ECA, Cantarella H. 2013. Impact of sugarcane trash on fertilizer requirements for São Paulo. Brazil Sci Agric. 70:345–352. doi:10.1590/S0103-90162013000500009.
  • Trujillo-Naría A, Rivera-Cruz MC, Magaña-Aquino M, Trujillo-Rivera EA. 2019. The burning of sugarcane plantation in the tropics modifies the microbial and enzymatic processes in soil and rhizosphere. J Soil Sci Plant Nutr. 19:906–919. doi:10.1007/s42729-019-00089-w.
  • Vranova V, Rejsek K, Formanek P. 2013. Proteolytic activity in soil: a review. Appl Soil Ecol. 70:23–32. doi:10.1016/j.apsoil.2013.04.003.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29–38. doi:10.1097/00010694-193401000-00003.
  • Wang J, Wang X, Xu M, Feng G, Zhang W, Lu C. 2015. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr Cycl Agroecosyst. 102:371–381. doi:10.1007/s10705-015-9710-9.
  • Yadav RL, Shukla SK, Suman A, Singh PN. 2009. Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biol Fertil Soils. 45:461–468. doi:10.1007/s00374-009-0352-4.
  • Yan C, Yan SS, Jia TY, Dong SK, Ma CM, Gong ZP. 2019. Decomposition characteristics of rice straw returned to the soil in northeast China. Nutr Cycl Agroecosyst. 114:211–224. doi:10.1007/s10705-019-09999-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.