272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biochar addition to organo-mineral fertilisers delays nutrient leaching and enhances barley nutrient content

, , , &
Pages 2537-2551 | Received 25 Aug 2022, Accepted 18 Dec 2022, Published online: 26 Dec 2022

References

  • Alburquerque JA, Salazar P, Barrón V, Torrent J, Del Campillo MDC, Gallardo A, Villar R. 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron Sustain Dev. 33(3):475–484. doi:10.1007/s13593-012-0128-3.
  • Anderson JPE, Domsch KH. 1980. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci. 130(4):211–216. doi:10.1097/00010694-198010000-00008.
  • Ashraf MN, Hu C, Wu L, Duan Y, Zhang W, Aziz T, Cai A, Abrar MM, Xu M. 2020. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. J Soils Sediments. 20(8):3103–3113. doi:10.1007/s11368-020-02642-y.
  • Blanco M. 2011. Supply of and access to key nutrients NPK for fertilizers for feeding the world in 2050. Madrid: UPM.
  • Bouman OT, Curtin D, Campbell CA, Biederbeck VO, Ukrainetz H. 1995. Soil acidification from long‐term use of anhydrous ammonia and urea. Soil Sci Soc Am J. 59(5):1488–1494. doi:10.2136/sssaj1995.03615995005900050039x.
  • Brockhoff SR, Christians NE, Killorn RJ, Horton R, Davis DD. 2010. Physical and mineral‐nutrition properties of sand‐based turfgrass root zones amended with biochar. Agron J. 102(6):1627–1631. doi:10.2134/agronj2010.0188.
  • Brookes P. 2001. The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes Environ. 16(3):131–140. doi:10.1264/jsme2.2001.131.
  • Brown PH, Zhao FJ, Dobermann A. 2021. What is a plant nutrient? Changing definitions to advance science and innovation in plant nutrition. Plant Soil. 476:1–13. doi:10.1007/s11104-021-05171-w.
  • Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, de la Luz Mora M. 2018. Smart fertilizers as a strategy for sustainable agriculture. Adv Agron. 147:119–157. doi:10.1016/bs.agron.2017.10.003.
  • Cameron KC, Di HJ, Moir JL. 2013. Nitrogen losses from the soil/plant system: a review. Ann Appl Biol. 162(2):145–173. doi:10.1111/aab.12014.
  • Chacón FJ, Cayuela ML, Roig A, Sánchez-Monedero MA. 2017. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Rev Environ Sci Biotechnol. 16(4):695–715. doi:10.1007/s11157-017-9450-1.
  • Chan KY, Xu Z. 2009. Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S, editors. Biochar for environmental management: science, Technology and Implementation. London: Earthscan; p. 67–84.
  • Chen L, Chen Q, Rao P, Yan L, Shakib A, Shen G. 2018. Formulating and optimizing a novel biochar-based fertilizer for simultaneous slow-release of nitrogen and immobilization of cadmium. Sustainability. 10(8):2740. doi:10.3390/su10082740.
  • Cheng W. 2009. Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biol Biochem. 41(9):1795–1801. doi:10.1016/j.soilbio.2008.04.018.
  • Chew J, Zhu L, Nielsen S, Graber E, Mitchell DR, Horvat J, Mohammed M, Liu M, Zwieten L, Donne S, et al. 2020. Biochar-based fertilizer: supercharging root membrane potential and biomass yield of rice. Sci Total Environ. 713:136431. doi:10.1016/j.scitotenv.2019.136431.
  • Das I, Pradhan M. 2016. Potassium-Solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena V, Maurya B, Verma J, Meena R, editors. Potassium solubilizing microorganisms for sustainable agriculture. New Delhi : Springer; p. 281–291. doi:10.1007/978-81-322-2776-2_20.
  • DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL. 2015. Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S, editors. Biochar for environmental management: science, technology and implementation. 2nd ed. London: Earthscan; p. 421–454.
  • Elmer WH, Pignatello JJ. 2011. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis. 95(8):960–966. doi:10.1094/PDIS-10-10-0741.
  • Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E. 2012. Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev Environ Sci Technol. 42(22):2311–2364. doi:10.1080/10643389.2011.574115.
  • European Parliament. 2019. Commission Implementing Regulation (EU) 2019/2164 of 17 December 2019 amending regulation (European Commission) No 889/2008 laying down detailed rules for the implementation of council regulation (European Commission) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Brussels:European Parliament.
  • Graber ER, Tsechansky L, Lew B, Cohen E. 2014. Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. Eur J Soil Sci. 65(1):162–172. doi:10.1111/ejss.12071.
  • Güereña D, Lehmann J, Hanley K, Enders A, Hyland C, Riha S. 2013. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil. 365(1):239–254. doi:10.1007/s11104-012-1383-4.
  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ. 206:46–59. doi:10.1016/j.agee.2015.03.015.
  • Haygarth PM, Bardgett RD, Condron LM. 2013. Nitrogen and phosphorus cycles and their management. In: Gregory PJ, Nortcliff S, editors. Soil conditions and plant growth. Chichester: Wiley-Blackwell; p. 132–159. doi:10.1002/9781118337295.
  • Hirel B, Tétu T, Lea PJ, Dubois F. 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability. 3(9):1452–1485. doi:10.3390/su3091452.
  • Hopkins B, Ellsworth J. 2005. Phosphorus availability with alkaline/calcareous soil. Western Nutrient Management Conference Salt Lake City, Utah. 6:88–93.
  • Ippolito JA , Novak JM, Busscher WJ , Ahmedna M, Rehrah D, Watts DW. 2012. Switchgrass biochar affects two aridisols. J Environ Qual. 41(4):1123–1130. doi:10.2134/jeq2011.0100.
  • Joseph S, Graber ER, Chia C, Munroe P, Donne S, Thomas T, Nielsen S, Marjo C, Rutlidge H, Pan GX, et al. 2013. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4(3):323–343. doi:10.4155/cmt.13.23.
  • Kammann C, Ippolito J, Hagemann N, Borchard N, Cayuela ML, Estavillo JM, Fuertes-Mendizabal T, Jeffery S, Kern J, Novak J, et al. 2017. Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. J Environ Eng Landsc. 25(2):114–139. doi:10.3846/16486897.2017.1319375.
  • Kanwar RS, Baker JL, Singh P. 1997. Use of chloride and fluorescent dye as tracers in measuring nitrate and atrazine transport through soil profile under laboratory conditions. J Environ Sci Health A Tox Hazard Subst Environ Eng. 32(7):1907–1919. doi:10.1080/10934529709376654.
  • Kassambara A. 2019a. Ggpubr: ‘ggplot2’ based publication ready plots. [accessed 2022 Jun 6]. https://github.com/kassambara/ggpubr.
  • Kassambara A. 2019b. Rstatix: pipe-friendly framework for basic statistical tests in R. [accessed 2022 Jun 6]. https://github.com/kassambara/rstatix.
  • Kominko H, Gorazda K, Wzorek Z. 2017. The possibility of organo-mineral fertilizer production from sewage sludge. Waste Biomass Valorization. 8(5):1781–1791. doi:10.1007/s12649-016-9805-9.
  • Laird DA, Fleming P, Davis DD, Wang B, Horton R, Karlen DL. 2010b. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma. 158(3–4):443–449. doi:10.1016/j.geoderma.2010.05.013.
  • Laird DA, Fleming P, Wang B, Horton R, Karlen DL. 2010a. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma. 158(3–4):436–442. doi:10.1016/j.geoderma.2010.05.012.
  • Laird D, Rogovska N. 2015. Biochar effects on nutrient leaching. In: Lehmann J, Joseph S, editors. Biochar for environmental management: science, Technology and Implementation. 2nd ed. London: Earthscan; p. 553–574.
  • Lawrinenko M, Laird DA. 2015. Anion exchange capacity of biochar. Green Chem. 17(9):4628–4636. doi:10.1039/C5GC00828J.
  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil. 249(2):343–357. doi:10.1023/A:1022833116184.
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota–a review. Soil Biol Biochem. 43(9):1812–1836. doi:10.1016/j.soilbio.2011.04.022.
  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, et al. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J. 70(5):1719–1730. doi:10.2136/sssaj2005.0383.
  • Liao J, Liu X, Hu A, Song H, Chen X, Zhang Z. 2020. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci Rep. 10(1):1–14. doi:10.1038/s41598-020-67528-y.
  • Luo W, Qian L, Liu W, Zhang X, Wang Q, Jiang H, Cheng B, Ma H, Wu Z. 2021. A potential Mg-enriched biochar fertilizer: excellent slow-release performance and release mechanism of nutrients. Sci Total Environ. 768:144454. doi:10.1016/j.scitotenv.2020.144454.
  • Malik MA, Khan KS, Marschner P, Hassan F. 2013. Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments. J Soil Sci Plant Nutr. 13(4):955–966. doi:10.4067/S0718-95162013005000075.
  • Marks EAN, Mattana S, Alcañiz JM, Pérez-Herrero E, Domene X. 2016. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agric Ecosyst Environ. 215:30–39. doi:10.1016/j.agee.2015.09.004.
  • Martí E, Sierra J, Domene X, Mumbrú M, Cruañas R, Garau MA. 2021. One-year monitoring of nitrogen forms after the application of various types of biochar on different soils. Geoderma. 402:115178. doi:10.1016/j.geoderma.2021.115178.
  • Martos S, Mattana S, Ribas A, Albanell E, Domene X. 2020. Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields: a case study in a Mediterranean calcareous soil. J Soils Sediments. 20:220–233. doi:10.1007/s11368-019-02400-9.
  • Melo LCA, Lehmann J, Carneiro JSDS, Camps-Arbestain M. 2022. Biochar-based fertilizer effects on crop productivity: a meta-analysis. Plant Soil. 472(1–2):45–58. doi:10.1007/s11104-021-05276-2.
  • Mete FZ, Mia S, Dijkstra FA, Abuyusuf M, Asmi H. 2015. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere. 25(5):713–719. doi:10.1016/S1002-0160(15)30052-7.
  • Nguyen TTN, Xu CY, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace HM, Bai SH. 2017. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma. 288:79–96. doi:10.1016/j.geoderma.2016.11.004
  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MA. 2010. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma. 154(3–4):281–288. doi:10.1016/j.geoderma.2009.10.014.
  • Oladele S, Adeyemo A, Awodun M, Ajayi A, Fasina A. 2019. Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. Int J Recycl Org Waste Agric. 8(3):295–308. doi:10.1007/s40093-019-0251-0.
  • Omondi MO, Xia X, Nahayo A, Liu X, Korai PK, Pan G. 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma. 274:28–34. doi:10.1016/j.geoderma.2016.03.029.
  • Pandit NR, Schmidt HP, Mulder J, Hale SE, Husson O, Cornelissen G. 2019. Nutrient effect of various composting methods with and without biochar on soil fertility and maize growth. Arch Agron Soil Sci. 66(2):250–265. doi:10.1080/03650340.2019.1610168.
  • Pang W, Hou D, Wang H, Sai S, Wang B, Ke J, Wu G, Li Q, Holtzapple MT. 2018. Preparation of microcapsules of slow-release NPK compound fertilizer and the release characteristics. J Braz Chem Soc. 29(11):2397–2404. doi:10.21577/0103-5053.20180117.
  • Poss R, Saragoni H. 1992. Leaching of nitrate, calcium and magnesium under maize cultivation on an oxisol in Togo. Fertil Res. 33(2):123–133. doi:10.1007/BF01051167.
  • Quilliam RS, Glanville HC, Wade SC, Jones DL. 2013. Life in the ‘charosphere’–Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol Biochem. 65:287–293. doi:10.1016/j.soilbio.2013.06.004.
  • Raun WR, Johnson GV. 1999. Improving nitrogen use efficiency for cereal production. Agron J. 91(3):357–363. doi:10.2134/agronj1999.00021962009100030001x.
  • R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (Austria). [accessed 2021 Mar 24]. https://www.R-project.org/.
  • Schimel DS. 1986. Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems. Biogeochemistry. 2(4):345–357. doi:10.1007/BF02180325.
  • Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM. 2007. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology. 88(6):1379–1385. doi:10.1890/06-0164.
  • Shackley S, Sohi S, Ibarrola R, Hammond J, Mašek O, Brownsort P, Haszeldine S. 2013. Biochar, tool for climate change mitigation and soil management. In: Lenton T, Vaughan N, editors. Geoengineering responses to climate change. New York (NY): Springer; p. 73–140. doi:10.1007/978-1-4614-5770-1_6.
  • Soil Survey Staff. 2010. Keys to soil taxonomy. 11th ed. Washington DC: USDA—Natural Resources Conservation Service.
  • Subedi R, Taupe N, Ikoyi I, Bertora C, Zavattaro L, Schmalenberger A, Leahy JJ, Grignani C. 2016. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci Total Environ. 550:924–933. doi:10.1016/j.scitotenv.2016.01.160.
  • Syers JK, Johnston AE, Curtin D. 2008. Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic information. In: FAO fertilizer and plant nutrition bulletin. Vol. 18. Rome: Food and Agriculture Organization of the United Nations.
  • Talboys PJ, Heppell J, Roose T, Healey JR, Jones DL, Withers PJ. 2016. Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil. 401(1–2):109–123. doi:10.1007/s11104-015-2747-3.
  • Ter Braak CJF, Šmilauer P. 2012. Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USA.
  • Van den Brink P J and Braak C J. 1999. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem. 18(2):138–148. doi: 10.1002/etc.5620180207.
  • Vanderdeelen J. 1995. Phosphate immobilisation in an uncropped field experiment on a calcareous soil. Plant Soil. 171(2):209–215. doi:10.1007/BF00010274.
  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl. 7:737–750. doi:10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2.
  • Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, Villanueva CM, van Breda SG. 2018. Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health. 15(7):1557. doi:10.1007/BF01051167.
  • Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis: Springer Verlag New York. doi:10.1007/978-3-319-24277-4.
  • Yamashita K, Honjo H, Nishida M, Kimura M, Asakawa S. 2014. Estimation of microbial biomass potassium in paddy field soil. Soil Sci Plant Nutr. 60(4):512–519. doi:10.1080/00380768.2014.919237.
  • Yanardağ IH, Zornoza R, Bastida F, Büyükkiliç-Yanardağ A, García C, Faz A, Mermut AR. 2017. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability. Geoderma. 295:1–9. doi:10.1016/j.geoderma.2017.02.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.