231
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Soil Diseases Suppressiveness Conferred by Organic Farming, Practices and Microbial Metabolites

, &
Pages 3201-3221 | Received 26 Oct 2022, Accepted 30 Apr 2023, Published online: 08 May 2023

References

  • Abdelhafez AA, Abbas MH, Attia TM, El Bably W, Mahrous SE. 2018. Mineralization of organic carbon and nitrogen in semi-arid soils under organic and inorganic fertilization. Environ Technol Innov. 9:243–253. doi:10.1016/j.eti.2017.12.011.
  • Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. 2015. Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. Lycopersici Front Plant Sci. 6:529. doi:10.3389/fpls.2015.00529.
  • Alam SS, Sakamoto K, Inubushi K. 2011. Biocontrol efficiency of Fusarium wilt diseases by a root-colonizing fungus Penicillium sp. Soil Sci Plant Nutr. 57(2):204–212. doi:10.1080/00380768.2011.564996.
  • Alazem M, Lin NS. 2015. Roles of plant hormones in the regulation of host–virus interactions. Mol Plant Pathol. 16(5):529–540. doi:10.1111/mpp.12204.
  • Anandan R, Dharumadurai D, Manogaran G. 2016. An introduction to Actinobacteria. In: Dhanasekaran D Jiang Y, editors. Actinobacteria - Basics and biotechnological applications. London (UK): Intech; pp. 1–37.
  • Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. 2018. Disease resistance mechanisms in plants. Genes. 9:339. doi:10.3390/genes9070339.
  • Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem. 28(8):575–576. doi:10.1080/00021369.1964.10858275.
  • Aryantha IP, Cross R, Guest DI. 2000. Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology®. 90(7):775–782. doi:10.1094/PHYTO.2000.90.7.775.
  • Ayangbenro AS, Chukwuneme CF, Ayilara MS, Kutu FR, Khantsi M, Adeleke BS, Glick BR, Babalola OO. 2022. Harnessing the rhizosphere soil microbiome of organically amended soil for plant productivity. Agronomy. 12:3179. doi:10.3390/agronomy12123179.
  • Bahroun A, Jousset A, Mhamdi R, Mrabet M, Mhadhbi H. 2018. Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: assessment of fungi soil suppressiveness and plant protection induction. Appl Soil Ecol. 124:131–140. doi:10.1016/j.apsoil.2017.10.025.
  • Barghi A, Esposti LD, Iafisco M, Adamiano A, Casado GE, Ivanchenko P, Mino L, Yoon HY, Joe EN, Jeon JR, et al. 2021. Microbial volatile organic compound (VOC)-driven dissolution and surface modification of phosphorus-containing soil minerals for plant nutrition: an indirect route for VOC-based plant–microbe communications. J Agric Food Chem. 69(48):14478–14487. doi:10.1021/acs.jafc.1c05187.
  • Barra P, Etcheverry M, Nesci A. 2015. Efficacy of 2, 6-di (t-butyl)-p-cresol (BHT) and the entomopathogenic fungus Purpureocillium lilacinum, to control Tribolium confusum and to reduce aflatoxin B1 in stored maize. J Stored Prod Res. 64:72–79. doi:10.1016/j.jspr.2015.09.003.
  • Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J. 2007. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric Syst. 94(1):13–25. doi:10.1016/j.agsy.2005.08.011.
  • Bending GD, Turner MK, Rayns F, Marx MC, Wood M. 2004. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem. 36(11):1785–1792. doi:10.1016/j.soilbio.2004.04.035.
  • Billings SA, Lichter J, Ziegler SE, Hungate BA, Richter Dde B. 2010. A call to investigate drivers of soil organic matter retention vs. mineralization in a high CO2 world. Soil Biol Biochem. 42(4):665–668. doi:10.1016/j.soilbio.2010.01.002.
  • Bixby‐brosi AJ, Potter DA. 2012. Can a chitin‐synthesis‐inhibiting turfgrass fungicide enhance black cutworm susceptibility to a baculovirus? Pest Manag Sci. 68(3):324–329. doi:10.1002/ps.2252.
  • Bonanomi G, Antignani V, Capodilupo M, Scala F. 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem. 42(2):136–144. doi:10.1016/j.soilbio.2009.10.012.
  • Bonanomi G, Lorito M, Vinale F, Woo SL. 2018. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol. 56(1):1–20. doi:10.1146/annurev-phyto-080615-100046.
  • Bongiorno G, Bünemann EK, Oguejiofor CU, Meier J, Gort G, Comans R, Mäder P, Brussaard L, de Goede R. 2019. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol Indic. 99:38–50. doi:10.1016/j.ecolind.2018.12.008.
  • Bongiorno G, Postma J, Bünemann EK, Brussaard L, de Goede RG, Mäder P, Tamm L, Thuerig B, de Goede RGM. 2019. Soil suppressiveness to Pythium ultimum in ten European long-term field experiments and its relation with soil parameters. Soil Biol Biochem. 133:174–187. doi:10.1016/j.soilbio.2019.03.012.
  • Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. 2019. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol. 10:302. doi:10.3389/fmicb.2019.00302.
  • Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crüsemann M, Lee YB, Kim JF, et al. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. Isme J. 10(1):119–129. doi:10.1038/ismej.2015.95.
  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils. 48(5):489–499. doi:10.1007/s00374-012-0691-4.
  • Chen SK, Edwards CA, Subler S. 2001. Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem. 33(14):1971–1980. doi:10.1016/S0038-0717(01)00131-6.
  • Chen YP, Tsai CF, Rekha PD, Ghate SD, Huang HY, Hsu YH, Liaw LL, Young CC. 2021. Agricultural management practices influence the soil enzyme activity and bacterial community structure in tea plantations. Bot Stud. 62(1):1–13. doi:10.1186/s40529-021-00314-9.
  • Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z. 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun. 9(1):3429. doi:10.1038/s41467-018-05683-7.
  • Cho G, Kwak YS. 2019. Evolution of antibiotic synthesis gene clusters in the Streptomyces globisporus TFH56, isolated from tomato flower. G3: Genes Genomes Genet. 9(6):1807–1813. doi:10.1534/g3.119.400037.
  • Coosemans J. 2005. Dimethyl disulphide (DMDS): a potential novel nematicide and soil disinfectant. J Acta Hortic. 698(698):57–64. doi:10.17660/ActaHortic.2005.698.6.
  • Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, et al. 2020. Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Front Bioeng Biotechnol. 8:1014. doi:10.3389/fbioe.2020.01014.
  • Davey RS, McNeill AM, Barnett SJ, Gupta VV., Gupta VVSR. 2019. Organic matter input influences incidence of root rot caused by Rhizoctonia solani AG8 and microorganisms associated with plant root disease suppression in three Australian agricultural soils. Soil Res. 57(4):321–332. doi:10.1071/SR18345.
  • de Boer W, Li X, Meisner A, Garbeva P. 2019. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol. 95(8):fiz105. doi:10.1093/femsec/fiz105.
  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM, de Souza JT. 2003. Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology®. 93(8):966–975. doi:10.1094/PHYTO.2003.93.8.966.
  • Dietrich LE, Teal TK, Price-Whelan A, Newman DK. 2008. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science. 321:1203–1206. doi:10.1126/science.1160619.
  • Ding L-N, Y-T L, Y-Z W, Li T, Geng R, Cao J, Zhang W, Tan X-L. 2022. Plant disease resistance-related signaling pathways: recent progress and future prospects. Internat J Mol Sci. 23(24):16200. doi:10.3390/ijms232416200.
  • Durán P, Tortella G, Viscardi S, Barra PJ, Carrión VJ, Mora ML, Pozo MJ. 2018. Microbial community composition in take-all suppressive soils. Front Microbiol. 9:2198. doi:10.3389/fmicb.2018.02198.
  • Durrer A, Gumiere T, Rumenos Guidetti Zagatto M, Petry Feiler H, Miranda Silva AM, Henriques Longaresi R, Homma SK, EJBN C. 2021. Organic farming practices change the soil bacteria community, improving soil quality and maize crop yields. PeerJ. 9:e11985. doi:10.7717/peerj.11985.
  • Eid EM, Alrumman SA, El-Bebany AF, Hesham AEL, Taher MA, Fawy KF. 2017. The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers (Cucumis sativus L.). Environ Sci Pollut Res. 24(19):16371–16382. doi:10.1007/s11356-017-9289-6.
  • Enebe MC, Babalola OO. 2021. Metagenomics assessment of soil fertilization on the chemotaxis and disease suppressive genes abundance in the maize rhizosphere. Genes. 12:535. doi:10.3390/genes12040535.
  • Feng H, Fu R, Hou X, Lv Y, Zhang N, Liu Y, Xu Z, Miao Y, Krell T, Shen Q, et al. 2021. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root–microbe rhizosphere interactions. Int J Mol Sci. 22(13):6655. doi:10.3390/ijms22136655.
  • Frioux C, Singh D, Korcsmaros T, Hildebrand F. 2020. From bag-of-genes to bag-of-genomes: metabolic modelling of communities in the era of metagenome-assembled genomes. Comput Struct Biotechnol J. 18:1722–1734. doi:10.1016/j.csbj.2020.06.028.
  • Fuller AT, Mellows G, Woolford M, Banks GT, Barrow KD, Chain EB. 1971. Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature. 234:416–417. doi:10.1038/234416a0.
  • Gao L, Wang R, Gao J, Li F, Huang G, Huo G, Liu Z, Tang W, Shen G. 2019. Analysis of the structure of bacterial and fungal communities in disease suppressive and disease conducive tobacco-planting soils in China. Soil Res. 58(1):35–40. doi:10.1071/SR19204.
  • Garau G, Roggero PP, Diquattro S, Garau M, Pinna MV, Castaldi P. 2021. Innovative amendments derived from industrial and municipal wastes enhance plant growth and soil functions in potentially toxic elements-polluted environments. Italian J Agron. 16(2):1777. doi:10.4081/ija.2021.1777.
  • Gardener BB M, Schroed KL, Kalloger SE, Raaijmakers JM, Thomashow LS, Weller DM. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol. 66(5):1939–1946. doi:10.1128/AEM.66.5.1939-1946.2000.
  • Ge YH, Pei DL, Zhao YH, Li WW, Wang SF, Xu YQ. 2007. Correlation between antifungal agent phenazine-1-carboxylic acid and pyoluteorin biosynthesis in Pseudomonas sp. M18. Curr Microbiol. 54(4):277–281. doi:10.1007/s00284-006-0317-x.
  • Ghani MI, Ali A, Atif MJ, Pathan SI, Pietramellara G, Ali M, Amin B, Cheng Z. 2022. Diversified crop rotation improves continuous monocropping eggplant production by altering the soil microbial community and biochemical properties. Plant Soil. 480(1–2):603–624. doi:10.1007/s11104-022-05606-y.
  • Gill JS, Sivasithamparam K, Smettem KRJ. 2001a. Effect of soil moisture at different temperatures on Rhizoctonia root rot of wheat seedlings. Plant Soil. 231(1):91–96. doi:10.1023/A:1010394119522.
  • Gill JS, Sivasithamparam K, Smettem KRJ. 2001b. Soil moisture affects disease severity and colonisation of wheat roots by Rhizoctonia solani AG-8. Soil Biol Biochem. 33(10):1363–1370. doi:10.1016/S0038-0717(01)00041-4.
  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosys Environ. 206:46–59. doi:10.1016/j.agee.2015.03.015.
  • Gu YQ, Mo MH, Zhou JP, Zou CS, Zhang KQ. 2007. Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem. 39(10):2567–2575. doi:10.1016/j.soilbio.2007.05.011.
  • Guo LM, Liao M. 2014. Suppression of Rhizoctonia solani and induction of host plant resistance by Paenibacillus kribbensis PS04 towards controlling of rice sheath blight. Biocontrol Sci Technol. 24(1):116–121. doi:10.1080/09583157.2013.844224.
  • Haas D, Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 3(4):307–319. doi:10.1038/nrmicro1129.
  • Haas D, Keel C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol. 41(1):117–153. doi:10.1146/annurev.phyto.41.052002.095656.
  • Hassan MN, Afghan S, Hafeez FY. 2011. Biological control of red rot in sugarcane by native pyoluteorin‐producing Pseudomonas putida strain NH‐50 under field conditions and its potential modes of action. Pest Manag Sci. 67(9):1147–1154. doi:10.1002/ps.2165.
  • Hayden HL, Rochfort SJ, Ezernieks V, Savin KW, Mele PM. 2019. Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using 1H NMR and LC-MS. Sci Total Environ. 651:1627–1638. doi:10.1016/j.scitotenv.2018.09.249.
  • Hayden HL, Savin KW, Wadeson J, VV G, PM M. 2018. Comparative metatranscriptomics of wheat rhizosphere microbiomes in disease suppressive and non-suppressive soils for Rhizoctonia solani AG8. Front Microbiol. 9:859. doi:10.3389/fmicb.2018.00859.
  • Herr LJ. 1988. Biocontrol of Rhizoctonia crown and root rot of sugar beet by binucleate Rhizoctonia spp. and Laetisaria arvalis. Ann Appl Biol. 113(1):107–118. doi:10.1111/j.1744-7348.1988.tb03287.x.
  • Hewavitharana SS, Mazzola M. 2016. Carbon source-dependent effects of anaerobic soil disinfestation on soil microbiome and suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans. Phytopathology®. 106(9):1015–1028. doi:10.1094/PHYTO-12-15-0329-R.
  • Hildebrand F. 2021. Ultra-resolution metagenomics: when enough is not enough. Msystems. 6: e00881–21. doi:10.1128/mSystems.00881-21.
  • Howell CR, Stipanovic RD. 1980. Suppression of pythium ultimum -induced damping-off of cotton seedlings by pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathol. 70(8):712–715. doi:10.1094/Phyto-70-712.
  • Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY. 2012. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci. 68(9):1306–1310. doi:10.1002/ps.3301.
  • Hütsch B, Augustin J, Merbach W. 2002. Plant rhizodeposition — an important source for carbon turnover in soils. J Plant Nutr Soil Sci. 165(4):397–407. doi:10.1002/1522-2624(200208)165:4<397:AID-JPLN397>3.0.CO;2-C.
  • Iida Y, Ogata A, Kanda H, Nishi O, Sushida H, Higashi Y, Tsuge T. 2022. Biocontrol activity of nonpathogenic strains of Fusarium oxysporum: colonization on the root surface to overcome nutritional competition. Front Microbiol. 13:826677. doi:10.3389/fmicb.2022.826677.
  • Jayaraman S, Naorem AK, Lal R, Dalal RC, Sinha NK, Patra AK, Chaudhari SK. 2021. Disease-suppressive soils—Beyond food production: a critical review. J Soil Sci Plant Nutr. 21(2):1437–1465. doi:10.1007/s42729-021-00451-x.
  • Jiao Y, Yoshihara T, Ishikuri S, Uchino H, Ichihara A. 1996. Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett. 37(7):1039–1042. doi:10.1016/0040-4039(95)02342-9.
  • Jinbo Z, Changchun S, Wenyan Y. 2006. Land use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Sci Soc Am J. 70(2):660–667. doi:10.2136/sssaj2005.0007.
  • Jones OA, Sdepanian S, Lofts S, Svendsen C, Spurgeon DJ, Maguire ML, Griffin JL. 2014. Metabolomic analysis of soil communities can be used for pollution assessment. Environ Toxicol Chem. 33(1):61–64. doi:10.1002/etc.2418.
  • Kim SD, Fuente LDL, Weller DM, Thomashow LS. 2012. Colonizing ability of Pseudomonas fluorescens 2112, among collections of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens spp. in pea rhizosphere. J Microbiol Biotechnol. 22(6):763–770. doi:10.4014/jmb.1112.12039.
  • Kim DR, Kwak YS. 2021. A genome-wide analysis of antibiotic producing genes in Streptomyces globisporus SP6C4. Plant Pathol J. 37(4):389–395. doi:10.5423/PPJ.NT.03.2021.0047.
  • Kinkel L, Schlatter D, Bakker M, Arenz B. 2012. Streptomyces competition and co-evolution in relation to plant disease suppression. Res Microbiol. 163(8):490–499. doi:10.1016/j.resmic.2012.07.005.
  • Klein E, Katan J, Gamliel A. 2011. Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis. 95:1116–1123. doi:10.1094/PDIS-01-11-0065.
  • Klein E, Katan J, Gamliel A. 2016. Soil suppressiveness by organic amendment to Fusarium disease in cucumber: effect on pathogen and host. Phytoparasitica. 44:239–249. doi:10.1007/s12600-016-0512-7.
  • Klein E, Ofek M, Katan J, Minz D, Gamliel A. 2013. Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology®. 103(1):23–33. doi:10.1094/PHYTO-12-11-0349.
  • Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. 2019. Soil and the intensification of agriculture for global food security. Environ Intl. 132:105078. doi:10.1016/j.envint.2019.105078.
  • Kushwaha A, Hans N, Kumar S, Rani R. 2018. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf. 147:1035–1045. doi:10.1016/j.ecoenv.2017.09.049.
  • Kwak YS, Weller DM. 2013. Take-all of wheat and natural disease suppression: a review. Plant Pathol J. 29(2):125–135. doi:10.5423/PPJ.SI.07.2012.0112.
  • Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. 2022. Biological control of plant pathogens: a global perspective. Microorganisms. 10:596. doi:10.3390/microorganisms10030596.
  • Lampis G, Deidda D, Maullu C, Petruzzelli S, Pompei R, Delle Monache F, Satta G. 1996. Karalicin, a new biologically active compound from Pseudomonas fluorescens/putida. I. production, isolation, physico-chemical properties and structure elucidation. J Antibiot (Tokyo). 49(3):260–262. doi:10.7164/antibiotics.49.260.
  • Laville J, Voisard C, Keel C, Maurhofer M, Defago G, Haas D. 1992. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A. 89(5):1562–1566. doi:10.1073/pnas.89.5.1562.
  • Lee JY, Moon SS, Hwang BK. 2003. Isolation and antifungal and antioomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-B16. Appl Environ Microbiol. 69(4):2023–2031. doi:10.1128/AEM.69.4.2023-2031.2003.
  • Lemanceau P, Alabouvette C. 1993. Suppression of Fusarium wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci Technol. 3(3):219–234. doi:10.1080/09583159309355278.
  • Lemanceau PM, Bakker AH, De Kogel WJ, Alabouvette C, Schippers B 1993. Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microb. 59(1):74–82.
  • Liu X, Jiang Q, Hu X, Zhang S, Liu Y, Huang W, Ding W. 2019. Soil microbial carbon metabolism reveals a disease suppression pattern in continuous ginger mono-cropping fields. Appl Soil Ecol. 144:165–169. doi:10.1016/j.apsoil.2019.07.020.
  • Loos J, Abson DJ, Chappell MJ, Hanspach J, Mikulcak F, Tichhit M, Ficher J. 2014. Putting meaning back into “sustainable intensification”. Front Ecol Environ. 12(6):356–361. doi:10.1890/130157.
  • Lucas P, Smiley RW, Collins HP. 1993. Decline of Rhizoctonia root rot on wheat in soils infested with Rhizoctonia solani AG-8. Phytopathol. 83(3):260–265. doi:10.1094/Phyto-83-260.
  • Marmiroli N, Maestri E. 2014. Plant peptides in defense and signaling. Peptides. 56:30–44. doi:10.1016/j.peptides.2014.03.013.
  • Mavrodi DV, Joe A, Mavrodi OV, Hassan KA, Weller DM, Paulsen IT, Loper JE, Alfano JR, Thomashow LS. 2011. Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol. 193(1):177–189. doi:10.1128/JB.00895-10.
  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. 2009. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. Isme J. 3(8):977–991. doi:10.1038/ismej.2009.33.
  • Mazzola M. 2007. Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol. 39(3):213–220.
  • Mazzola M, Brown J, Izzo AD, Cohen MF. 2007. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a Brassicaceae species and time-dependent manner. Phytopathology®. 97(4):454–460. doi:10.1094/PHYTO-97-4-0454.
  • Mazzola M, Hewavitharana SS, Strauss SL. 2015. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation. Phytopathology®. 105(4):460–469. doi:10.1094/PHYTO-09-14-0247-R.
  • McGhee GC, Sundin GW. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology®. 101(2):192–204. doi:10.1094/PHYTO-04-10-0128.
  • McRose DL, Newman DK. 2021. Redox-active antibiotics enhance phosphorus bioavailability. Science. 371:1033–1037. doi:10.1126/science.abd1515.
  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wünsche H, Baldwin IT. 2013. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell. 25(7):2731–2747. doi:10.1105/tpc.113.114744.
  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman JO. 1996. Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol. 62(8):3061–3065. doi:10.1128/aem.62.8.3061-3065.1996.
  • Mishra J, Arora NK. 2018. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol. 125:35–45. doi:10.1016/j.apsoil.2017.12.004.
  • Misztal PK, Lymperopoulou DS, Adams RI, Scott RA, Lindow SE, Bruns T, Taylor JW, Uehling J, Bonito G, Vilgalys R, et al. 2018. Emission factors of microbial volatile organic compounds from environmental bacteria and fungi. Environ Sci Technol. 52(15):8272–8282. doi:10.1021/acs.est.8b00806.
  • Moeskops B, Buchan D, Sleutel S, Herawaty L, Husen E, Saraswati R, Setyorini D, De Neve S. 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl Soil Ecol. 45(2):112–120. doi:10.1016/j.apsoil.2010.03.005.
  • Muhammad I, Wang J, Sainju U, Zhang S, Zhao F, Khan A. 2020. Cover cropping enhances soil microbial biomass and affects microbial community structure: a meta-analysis. Geoderma. 381:114696. doi:10.1016/j.geoderma.2020.114696.
  • Nielsen TH, Christophersen C, Anthoni U, Sørensen J. 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol. 87(1):80–90. doi:10.1046/j.1365-2672.1999.00798.x.
  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J. 2000. Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol. 89(6):992–1001. doi:10.1046/j.1365-2672.2000.01201.x.
  • Nwokolo NL, Enebe MC. 2022. Shotgun metagenomics evaluation of soil fertilization effect on the rhizosphere viral community of maize plants. Antonie Leeuwenhoek. 115(1):69–78. doi:10.1007/s10482-021-01679-4.
  • Ossowicki A, Tracanna V, Petrus MLC, van Wezel G, Raaijmakers JM, Medema MH, Garbeva P. 2020. Microbial and volatile profiling of soils suppressive to Fusarium culmorum of wheat. Proc Biol Sci. 287(1921):20192527. doi:10.1098/rspb.2019.2527.
  • Palaniyandi SA, Yang SH, Zhang L, Suh JW. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol. 97(22):9621–9636. doi:10.1007/s00253-013-5206-1.
  • Pan Y, Wu Y, Li X, Zeng J, Lin X. 2019. Continuing impacts of selective inhibition on bacterial and fungal communities in an agricultural soil. Microbial Ecol. 78(4):927–935. doi:10.1007/s00248-019-01364-0.
  • Paterson E, Sim A. 2013. Soil‐specific response functions of organic matter mineralization to the availability of labile carbon. Glob Chang Biol. 19(5):1562–1571. doi:10.1111/gcb.12140.
  • Penton CR, Gupta TJ VV, Neate SM, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK. 2014. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One. 9(4):e93893. doi:10.1371/journal.pone.0093893.
  • Postma J, Scheper RWA, Schilder MT. 2010. Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biol Biochem. 42(5):804–812. doi:10.1016/j.soilbio.2010.01.017.
  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 321(1–2):341–361. doi:10.1007/s11104-008-9568-6.
  • Raaijmakers JM, Weller DM. 1998. Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions®. 11(2):144–152. doi:10.1094/MPMI.1998.11.2.144.
  • Raaijmakers JM, Weller DM. 2001. Exploiting genotypic diversity of 2, 4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol. 67(6):2545–2554. doi:10.1128/AEM.67.6.2545-2554.2001.
  • Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y. 2011. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2, 4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol. 34(3):180–188. doi:10.1016/j.syapm.2010.10.005.
  • Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Muriel C, et al. 2013. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14(1):54. doi:10.1186/1471-2164-14-54.
  • Ren L, Huo H, Zhang F, Hao W, Xiao L, Dong C, Xu G. 2016. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense. Plant Signaling & Behavior. 11(6):e1187357. doi:10.1080/15592324.2016.1187357.
  • Rezzonico F, Stockwell VO, Duffy B. 2009. Plant agricultural streptomycin formulations do not carry antibiotic resistance genes. Antimicrob Agents Chemother. 53(7):3173–3177. doi:10.1128/AAC.00036-09.
  • Rincon-Florez VA, Carvalhais LC, Dang YP, Crawford MH, Schenk PM, Dennis PG. 2020. Significant effects on soil microbial communities were not detected after strategic tillage following 44 years of conventional or no-tillage management. Pedobiologia. 80:150640. doi:10.1016/j.pedobi.2020.150640.
  • Rogers EW, Dalisay DS, Molinski TF. 2010. Zwittermicin A: synthesis of analogs and structure–activity studies. Bioorg Med Chem Lett. 20(7):2183–2185. doi:10.1016/j.bmcl.2010.02.032.
  • Salem SF, Dobolyi C, Helyes L, Pek Z, Dimeny P. 2003. Side-effect of benomyl and captan on arbuscular mycorrhiza formation in tomato plant. Acta Hortic. 613(613):243–246. doi:10.17660/ActaHortic.2003.613.37.
  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. 2017. Disease suppressive soils: new insights from the soil microbiome. Phytopathology®. 107(11):1284–1297. doi:10.1094/PHYTO-03-17-0111-RVW.
  • Scotti R, Bonanomi G, Scelza R, Zoina A, Rao M. 2015. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr. 15(ahead):333–352. doi:10.4067/S0718-95162015005000031.
  • Shabanpour M, Daneshyar M, Parhizkar M, Lucas-Borja ME, Zema DA. 2020. Influence of crops on soil properties in agricultural lands of northern Iran. Sci Total Environ. 711:134694. doi:10.1016/j.scitotenv.2019.134694.
  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F. 1992. Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol. 58(1):353–358. doi:10.1128/aem.58.1.353-358.1992.
  • Shanmugaiah V, Mathivanan N, Varghese B. 2010. Purification, crystal structure and antimicrobial activity of phenazine‐1‐carboxamide produced by a growth‐promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol. 108(2):703–711. doi:10.1111/j.1365-2672.2009.04466.x.
  • Sharma M, Sudheer S, Usmani Z, Rani R, Gupta P. 2020. Deciphering the omics of plant-microbe interaction: perspectives and new insights. Curr Genomics. 21(5):343–362. doi:10.2174/1389202921999200515140420.
  • Shoji JI, Hinoo H, Kato T, Hattori T, Hirooka K, Tawara K, Shiratori O, Terui Y. 1990. Isolation of cepafungins I, II and III from Pseudomonas species. J Antibiot (Tokyo). 43(7):783–787. doi:10.7164/antibiotics.43.783.
  • Shoji JI, Hinoo H, Terui Y, Kikuchi J, Hattori T, Ishii K, Matsumoto K, Yoshida T. 1989. Isolation of azomycin from Pseudomonas fluorescens. J Antibiot (Tokyo). 42:1513–1514. doi:10.7164/antibiotics.42.1513.
  • Shrestha U, Dee ME, Piya S, Ownley BH, Butler DM. 2020. Soil inoculation with Trichoderma asperellum, T. harzianum or Streptomyces griseoviridis prior to anaerobic soil disinfestation (ASD) does not increase ASD efficacy against Sclerotium rolfsii germination. Appl Soil Ecol. 147:103383. doi:10.1016/j.apsoil.2019.103383.
  • Shrestha U, Ownley BH, Bruce A, Rosskopf EN, Butler DM. 2021. Anaerobic soil disinfestation efficacy against Fusarium oxysporum is affected by soil temperature, amendment type, rate, and C: n ratio. Phytopathol. 111:1380–1392. doi:10.1094/PHYTO-07-20-0276-R.
  • Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, Steinberg C. 2018. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Chateaurenard region. Front Microbiol. 9:568. doi:10.3389/fmicb.2018.00568.
  • Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K. 2020. Phyllospheric microbiomes: diversity, ecological significance, and biotechnological applications. Plant Microbiomes Sustainable Agric. 25:113–172.
  • Slack SM, Walters KJ, Outwater CA, Sundin GW. 2021. Effect of kasugamycin, oxytetracycline, and streptomycin on in-orchard population dynamics of Erwinia amylovora on apple flower stigmas. Plant Dis. 105(6):1843–1850. doi:10.1094/PDIS-07-20-1469-RE.
  • Somera TS, Freilich S, Mazzola M. 2021. Comprehensive analysis of the apple rhizobiome as influenced by different Brassica seed meals and rootstocks in the same soil/plant system. Appl Soil Ecol. 157:103766. doi:10.1016/j.apsoil.2020.103766.
  • Suh L, Lethbridge B, Raffel S, He H, Clardy J, Handelsman J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol. 60(6):2023–2030. doi:10.1128/aem.60.6.2023-2030.1994.
  • Suzuki S, Isono K, Nagatsu J, Mizutani T, Kawashima Y, Mizuno T. 1965. A new antibiotic, polyoxin a. J Antibiot (Tokyo). 18:131.
  • Tanaka N, Yamaguchi H, Umezawa H. 1966. Mechanism of kasugamycin action on polypeptide synthesis. J Biochem. 60(4):429–434. doi:10.1093/oxfordjournals.jbchem.a128454.
  • Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, Ruan Y, Geisen S, Shen Q, Kowalchuk GA. 2020. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 8(1):1–14. doi:10.1186/s40168-020-00892-z.
  • Taparia T, Hendrix E, Hendriks M, Nijhuis E, de Boer W, van der Wolf J. 2021. Casing soil microbiome mediates suppression of bacterial blotch of mushrooms during consecutive cultivation cycles. Soil Biol Biochem. 155:108161. doi:10.1016/j.soilbio.2021.108161.
  • Tewoldemedhin Y, Lamprecht S, Mazzola M. 2015. Rhizoctonia anastomosis groups associated with diseased rooibos seedlings and the potential of compost as soil amendment for disease suppression. Plant Dis. 99(7):1020–1025. doi:10.1094/PDIS-11-14-1211-RE.
  • Thomashow LS. 1996. Biological control of plant root pathogen. Curr Opin Biotechnol. 7(3):343–347. doi:10.1016/S0958-1669(96)80042-5.
  • Tiwari P, Rai H, Upreti DK, Trivedi S, Shukla P. 2011. Assessment of antifungal activity of some Himalayan foliose lichens against plant pathogenic fungi. Am J Plant Sci. 2(06):841–846. doi:10.4236/ajps.2011.26099.
  • Tomihama T, Nishi Y, Mori K, Shirao T, Iida T, Uzuhashi S, Ohkuma M, Ikeda S. 2016. Rice bran amendment suppresses potato common scab by increasing antagonistic bacterial community levels in the rhizosphere. Phytopathology®. 106(7):719–728. doi:10.1094/PHYTO-12-15-0322-R.
  • Tracanna V, Ossowicki A, Petrus ML, Overduin S, Terlouw BR, Lund G, Robinson SL, Warris S, Schijlen EG, Van Wezel GP, et al. 2021. Dissecting disease-suppressive rhizosphere microbiomes by functional amplicon sequencing and 10× metagenomics. mSystems. 6(3):e01116–1120. doi:10.1128/mSystems.01116-20.
  • Vida C, de Vicente A, Cazorla FM. 2020. The role of organic amendments to soil for crop protection: induction of suppression of soilborne pathogens. Ann Appl Biol. 176(1):1–15. doi:10.1111/aab.12555.
  • Vurukonda SSKP, Giovanardi D, Stefani E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci. 19:952. doi:10.3390/ijms19040952.
  • Weerakoon DMN, Reardon CL, Paulitz TC, Izzo AD, Mazzola M. 2012. Long-term suppression of Pythium abappressorium induced by Brassica juncea seed meal amendment is biologically mediated. Soil Biol Biochem. 51:44–52. doi:10.1016/j.soilbio.2012.03.027.
  • Whiffen AJ. 1950. The activity in vitro of cycloheximide (Acti-dione) against fungi pathogenic to plants. Mycologia. 42(2):253–258. doi:10.1080/00275514.1950.12017828.
  • Winter JM. 2021. A community effort: combining functional amplicon sequencing and metagenomics reveals potential biosynthetic gene clusters associated with protective phenotypes in rhizosphere microbiomes. mSystems. 6(3): e00587–21. doi:10.1128/mSystems.00587-21.
  • Wong WC, Preece TF. 1985. Pseudomonas tolaasii in mushroom (Agaricus bisporus) crops: activity of formulations of 2-bromo-2-nitropropane-1,3-diol (bronopol) against the bacterium and the use of this compound to control blotch disease. J Appl Bacteriol. 58(3):275–281. doi:10.1111/j.1365-2672.1985.tb01461.x.
  • Yang M, Mavrodi DV, Thomashow LS, Weller DM. 2018. Differential response of wheat cultivars to Pseudomonas brassicacearum and take-all decline soil. Phytopathology®. 108(12):1363–1372. doi:10.1094/PHYTO-01-18-0024-R.
  • Yim NH, Hwang EI, Yun BS, Park KD, Moon JS, Lee SH, Do Sung N, Kim SU. 2008. Sesquiterpene furan compound CJ-01, a novel chitin synthase 2 inhibitor from Chloranthus japonicus SIEB. Biol Pharm Bull. 31(5):1041–1044. doi:10.1248/bpb.31.1041.
  • Zhang J, Liu J, Ma Y, Ren D, Cheng P, Zhao J, Zhang F, Yao Y. 2016. One-pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety. Bioorg Med Chem Lett. 26(9):2273–2277. doi:10.1016/j.bmcl.2016.03.052.
  • Zhang Q, Stummer BE, Guo Q, Zhang W, Zhang X, Zhang L, Harvey PR. 2021. Quantification of Pseudomonas protegens FD6 and Bacillus subtilis NCD-2 in soil and the wheat rhizosphere and suppression of root pathogenic Rhizoctonia solani AG-8. Biol Control. 154:104504. doi:10.1016/j.biocontrol.2020.104504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.