377
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Soil quality assessment based on machine learning approach for cultivated lands in semi-humid environmental condition part of Black Sea region

ORCID Icon, &
Pages 3514-3532 | Received 07 Mar 2023, Accepted 10 Aug 2023, Published online: 17 Aug 2023

References

  • Akıncı H, Özalp AY, Turgut B. 2013. Agricultural land use suitability analysis using GIS and AHP technique. Comput Electron Agric. 97:71–82. doi:10.1016/j.compag.2013.07.006.
  • Alaboz P, Dengiz O. 2023. The least limiting water range to estimate soil water content using random forest integrated with GIS and geostatistical approaches. JAS. 29(4). doi:10.15832/ankutbd.1137917.
  • Alaboz P, Dengiz O, Demir S. 2021. Barley yield estimation performed by ANN integrated with the soil quality index modified by biogas waste application. Zemdirbyste-Agriculture. 108(3). doi:10.13080/z-a.2021.108.028.
  • Annabi M, Houot S, Francou C, Poitrenaud M, Bissonnais YL. 2007. Soil aggregate stability improvement with urban composts of different maturities. Soil Sci Soc Am J. 71(2):413–423. doi:10.2136/sssaj2006.0161.
  • Armenise E, Redmile-Gordon M, Stellacci A, Ciccarese A and Rubino P. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil Tillage Res. 130:91–98. doi: 10.1016/j.still.2013.02.013.
  • Asadi Nalivan O, Mousavi Tayebi SA, Mehrabi M, Ghasemieh H, Scaioni M. 2022. A hybrid intelligent model for spatial analysis of groundwater potential around Urmia Lake, Iran. Stoch Environ Res Risk Assess. 37(5):1–18. doi:10.1007/s00477-022-02368-y.
  • Bakhshandehmehr L, Soltani S, Sepehr A. 2009. Application of MEDALUS method for desertification mapping in SEJZI plain. Geophy Res Abstr. 11:EGU2009-1263–7.
  • Bhavya R, Sivaraj K, Elango L. 2023. Ant colony based artificial neural network for predicting spatial and temporal variation in groundwater quality. Water (Switzerland). 15(12):2222. doi:10.3390/w15122222.
  • Bilgili AV, Küçük Ç, Van Es HM. 2017. Assessment of the quality of the Harran plain soils under long-term cultivation. EMAS. 189(9):1–15. doi:10.1007/s10661-017-6177-y.
  • Blake GRHartge KH. 1986. Bulk density. In: Klute A, editors. Methods of soil analysis: part 1 physical and mineralogical methods. 1 st ed. America: SSSA Book Series; p. 363–375.
  • Bölük E. 2016. According to Erinç climate classification Turkish climate, ministry of forestry and water management general directorate of meteorology. Ankara: General Directorate of Meteorology.
  • Bouyoucos GJ. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils 1. Agron J. 43(9):434–438. doi:10.2134/agronj1951.00021962004300090005x.
  • Demattê JAM, Safanelli JL, Poppiel RR, Rizzo R, Silvero NEQ, Mendes WDS, Lisboa CDS, Dotto AC, Salazar DFU, Mello FADO, et al. 2020. Bare Earth’s surface spectra as a proxy for soil resource monitoring. Sci Rep. 10(1):4461. doi:10.1038/s41598-020-61408-1.
  • Dengiz O, Ormanciı İF, Özkan B. 2022. Determination of agricultural suitability classes using multi-criteria decision analysis and linear combination technique. A case study; Ankara-Gölbaşi special environmental protection area and its near vicinity. J Soil Sci Plant Nutr. 10(1):44–57. doi:10.33409/tbbbd.1083452.
  • Dengiz O, Sarıoğlu FE. 2013. Parametric approach with linear combination technique in land evaluation studies. JAS. 19(2013):101–112.
  • Dike HU, Zhou Y, Deveerasetty KK, Wu Q 2018. Unsupervised learning based on artificial neural network: a review. In 2018 IEEE Int Conf on CBS. 322–327. doi: 10.1109/cbs.2018.8612259.
  • Esfandiarpour-Boroujeni I, Shamsabadi MS, Shirani H, Mosleh Z, Bodaghabadi MB, Salehi MH. 2020. Comparison of error and uncertainty of decision tree and learning vector quantization models for predicting soil classes in areas with low altitude variations. Catena. 191:104581. doi:10.1016/j.catena.2020.104581.
  • Grewelling T, Peech M. 1960. Chemical soil test. United States: Cornell University, Agr Expt Sta Bull. p. 960.
  • Hassler SC, Baysal-Gurel F. 2019. Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy. 9(10):618. doi:10.3390/agronomy9100618.
  • Hazelton P, Murphy B. 2016. Interpreting soil test results: what do all the numbers mean? 1 st ed. Australia: CSIRO Publ; p. 100–150.
  • Heuvelink GBM, Webster R. 2001. Modelling soil variation: past, present, and future. Geoderma. 100:269–301. doi:10.1016/S0016-7061(01)00025-8.
  • Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F. 2020. A survey on contrastive self-supervised learning. Technologies. 9(1):2. doi:10.3390/technologies9010002.
  • Jian J, Du X, Reiter MS, Stewart RD. 2020. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem. 143:107735. doi:10.1016/j.soilbio.2020.107735.
  • Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. 2021. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol. 70:15–22. doi:10.1016/j.copbio.2020.09.003.
  • Kacar B, Katkat V. 2009. Plant Nutrition. Ankara: Nobel publications; p. 659.
  • Karahan G, Erşahin S, Öztürk HS. 2014. Field capacity dynamics affected by soil properties. JAFAG. 30(1):1–9.
  • Karaman MR, Brohi AR, Müftüoğlu NM, Öztaş T, Zengin M. 2007. Sustainable soil fertility. Turkey: Koyulhisar Agriculture Culture Publisher; p. 20–50.
  • Karlen, D.L, Stott, D.E 1994 A framework for evaluating physical and chemical indicators of soil quality. Defining soil quality for a sustainable environment, 35 53–72
  • Kaya NS, Özkan B, Dengiz O, Turan İD. 2022. Digital mapping and spatial variability of soil quality index for desertification in the Akarçay basin under the semi-arid terrestrial ecosystem using neutrosophic fuzzy-AHP approach. Nat Hazard. 112(3):1–32. doi:10.1007/s11069-022-05258-2.
  • Kayhan G, İ̇şeri İ. 2022. Counter propagation network based extreme learning machine. Neural Process Lett 1-16. 55(1):857–872. doi:10.1007/s11063-022-11021-2.
  • Keshavarzi A, Del Árbol MÁS, Kaya F, Gyasi‐Agyei Y, Rodrigo‐Comino J. 2022. Digital mapping of soil texture classes for efficient land management in the piedmont plain of Iran. Soil Use And Manag. 38(4):1705–1735. doi:10.1111/sum.12833.
  • Keshavarzi A, Sarmadian A. 2012. Mapping of spatial distribution of soil salinity and alkalinity in a semi-arid region. Ann Wars Agric Univ Land Reclam. 44(1):3–14. doi:10.2478/v10060-011-0057-x.
  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S, Pell AN, Recha JW, Pell AN. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems. 11(5):726–739. doi:10.1007/s10021-008-9154-z.
  • Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. 2019. Soil and the intensification of agriculture for global food security. Environ Int. 132:105078. doi:10.1016/j.envint.2019.105078.
  • Le HA, Nguyen TA, Nguyen DD, Prakash I. 2020. Prediction of soil unconfined compressive strength using artificial neural network model. Vietnam J Earth Sci. 42(3):255–264. doi:10.15625/0866-7187/42/3/15342.
  • Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. 2018. Machine learning in agriculture: a review. Sensors. 18(8):2674. doi:10.3390/s18082674.
  • Li KQ, Kang Q, Nie JY, Huang XW. 2022. Artificial neural network for predicting the thermal conductivity of soils based on a systematic database. Geothermics. 103:102416. doi:10.1016/j.geothermics.2022.102416.
  • Li KQ, Liu Y, Kang Q. 2022. Estimating the thermal conductivity of soils using six machine learning algorithms. Int Commun Heat Mass Transf. 136:106139. doi:10.1016/j.icheatmasstransfer.2022.106139.
  • Lin LJ. 1992. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach Learn. 8(3–4):293–321. doi:10.1007/BF00992699.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. S Soil Sci Soc Am J. 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Li KQ, Yin ZY, Liu Y. 2023. A hybrid SVR-BO model for predicting the soil thermal conductivity with uncertainty. Can Geotech J. doi: 10.1139/cgj-2023-0105.
  • Li KQ, Yin ZY, Zhang N, Liu Y. 2023. A data-driven method to model stress-strain behaviour of frozen soil considering uncertainty. Cold Reg Sci Technol. 103906:103906. doi:10.1016/j.coldregions.2023.103906.
  • Lwin CS, Seo BH, Kim HU, Owens G, Kim KR. 2018. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci Plant Nutr. 64(2):156–167. doi:10.1080/00380768.2018.1440938.
  • Malone BP, Minasny B, McBratney AB. 2017. Using R for digital soil mapping. Springer International Publishing. doi: 10.1007/978-3-319-44327-0.
  • Mehrabi M. 2021. Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy. Natur Hazards. 1–37. doi: 10.21203/rs.3.rs-771789/v1.
  • Moayedi H, Mehrabi M, Bui DT, Pradhan B, Foong LK. 2020. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. J Environ Manage. 260:109867. doi:10.1016/j.jenvman.2019.109867.
  • Nelson DW, Sommers LE. 1982. Total carbon, organic carbon, and organic matter. In: AL P, Miller R Keeney D, editors. Method of soil analysis, part 2. Madison, Wisc: ASA; p. 539–579. doi: 10.2134/agronmonogr9.2.2ed.c29.
  • Nussbaum M, Spiess K, Baltensweiler A, Grob U, Keller A, Greiner L, Schaepman ME, Papritz A. 2018. Evaluation of digital soil mapping approaches with large sets of environmental covariates. SOIL. 4(1):1–22. doi:10.5194/soil-4-1-2018.
  • Odabas MS, Ergun E, Oner F. 2013. Artificial neural network approach for the predicition of the corn (Zea mays L.) leaf area. BJAS. 19(4):766–769.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Vol. 939, Washington D.C., USA: U.S Dept of Agric Cric.
  • Öztürk S, Beker Y, Sarı M, Pehlivan L. 2021. Estimation of ground types in different districts of Gümüşhane province based on the ambient vibrations H/V measurements. Sigma J Eng Nat Sci. 39(4):374–391.
  • Pacci S, Dengiz O, Saygın F, Alaboz P. 2022. Soil quality assessment of paddy cultivation lands in the bafra plain based on the SMAF model. Turk J Agric Res. 9(2):164–174. doi:10.19159/tutad.1067105.
  • Palmer J, Thorburn PJ, Biggs JS, Dominati EJ, Probert ME, EA M, WJ P, Dodd M, Snow V, Larsen JR, et al. 2017. Nitrogen cycling from increased soil organic carbon contributes both positively and negatively to ecosystem services in wheat agro-ecosystems. Front Plant Sci. 8:731. doi:10.3389/fpls.2017.00731.
  • Qiao J, Li F, Han H, Li W. 2016. Constructive algorithm for fully connected cascade feedforward neural networks. Neurocomputing. 182:154–164. doi:10.1016/j.neucom.2015.12.003.
  • Ramamoorthy D. 2015. Assessment of heavy metal pollution and its impacts on soil physical, chemical properties and β-glucosidase activities in agricultural lands, Puducherry region. 1. India department of Science. Technol Environ, Gov Puducherry.
  • Ramos FT, Dores EFDC, Weber OLDS, Beber DC, Campelo JH Jr, Maia JCDS. 2018. Soil organic matter doubles the cation exchange capacity of tropical soil under no‐till farming in Brazil. J Sci Food Agric. 98(9):3595–3602. doi:10.1002/jsfa.8881.
  • Rolda´n A, Salinas-Garcı´a J, Alguacil M, Dı´az E, Caravaca F. 2005. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma. 129(3–4):178–185. doi:10.1016/j.geoderma.2004.12.042.
  • Saaty TL. 1977. A scaling method for priorities in hierarchical structures. J Math Psychol. 15(3):234–328. doi:10.1016/0022-2496(77)90033-5.
  • Saaty TL. 1990. How to make a decision: the analytic hierarchy process. Eur J Oper Res. 48(1):9–26. doi:10.1016/0377-2217(90)90057-I.
  • Saaty TL. 2000. The fundamentals of decision making and priority theory with the analytic Hierarchy process. Vol. VI. RWS Publications, Pitsburg; p. 478. doi: 10.1007/978-94-015-9799-9_2
  • Saaty TL. 2008. Decision making with the analytic hierarchy process. IJSSci. 1(1):83–98. doi:10.1504/IJSSCI.2008.017590.
  • Saaty TL, Vargas LG. 2001. Models, methods, concepts and applications of the analytic Hierarchy process. Kluwer. doi: 10.1007/978-1-4615-1665-1.
  • Şenol H, Alaboz P, Demir S, Dengiz O. 2020. Computational intelligence applied to soil quality index using GIS and geostatistical approaches in semiarid ecosystem. Arab J Geosci. 13(23):1–20. doi:10.1007/s12517-020-06214-9.
  • Shaddad SM. 2018. Geostatistics and proximal soil sensing for sustainable agriculture. Sustainability Agric Environ In Egypt: Part I: Soil-Water-Food Nexus. 255–271. doi: 10.1007/698_2018_244.
  • Sharififar A, Sarmadian F, Minasny B. 2019. Mapping imbalanced soil classes using Markov chain random fields models treated with data resampling technique. Comput Electron Agric. 159:110–118. doi:10.1016/j.compag.2019.03.006.
  • Sha T, Zhang W, Shen T, Li Z, Mei T. 2021. Deep person generation: a survey from the perspective of face, pose and cloth synthesis. New York City: ACM Computing Surveys.
  • Shen C. 2018. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour Res. 54(11):8558–8593. doi:10.1029/2018wr022643.
  • Sinha NK, Chopra UK, Singh AK. 2014. Cropping system effects on soil quality for three agro-ecosystems in India. Exp Agri. 50(3):321–342. doi:10.1017/s001447971300046x.
  • Soil Pollution Control Regulation. 2005. https://www.resmigazete.gov.tr/eskiler/2005/05/20050531-6.htm.
  • Soil Survey Staff. 1993. Soil Survey Manual, USDA., handbook no: 18. Washington D.C.
  • Taş N, Okumuş E, Öner Ş, Köksal C, İ̇cat MY, Tanış S. 2003. Gümüşhane provincial environmental status report. Gümüşhane governorship provincial directorate of environment and forestry, Gümüşhane. Türkiye. 2003:179.
  • USDA. 2022. Soil health. United States department of agriculture. Natural Resources Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/main/nd/soils/health/.
  • van Es HM, Karlen DL. 2019. Reanalysis validates soil health indicator sensitivity and correlation with long‐term crop yields. Soil Sci Soc Am J. 83(3):721–732. doi:10.2136/sssaj2018.09.0338.
  • Van Leeuwen JP, Creamer RE, Cluzeau D, Debeljak M, Gatti F, Henriksen CB, Kuzmanovski V, Mentas C, Peres G, Picaud C, et al. 2019. Modeling of soil functions for assessing soil quality: Soil biodiversity and habitat provisioning. Front Environ Sci. 7:113. doi:10.3389/fenvs.2019.00113.
  • Van Wambeke AR. 2000. The Newhall simulation model for estimating soil moisture and temperature regimes. Department of crop and soil sciences. Ithaca, NY. USA: Cornell University.
  • Wadoux AMJC, Minasny B, McBratney AB. 2020. Machine learning for digital soil mapping: applications, challenges and suggested solutions. Earth Sci Revi. 210:103359. doi:10.1016/j.earscirev.2020.103359.
  • Wang X, Williams JR, Gassman PW, Baffaut C, Izaurralde RC, Jeong J, Kiniry JR. 2012. EPIC and APEX: model use, calibration, and validation. Trans ASABE. 55(4):1447–1462. doi:10.13031/2013.42253.
  • WRB. 2014. World reference Base for soil resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports: 106, Food And Agriculture Organization of The United Nations, Rome. 203.
  • Wu X, Różycki P, Wilamowski BM. 2014. A hybrid constructive algorithm for single-layer feedforward networks learning. IEEE Trans Neural Netw Learn Syst. 26(8):1659–1668. doi:10.1109/tnnls.2014.2350957.
  • Wymore, AW. 1993. An introduction to the Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of System Design. In: Boca R, Arbor A, editors. Model-based systems engineering. London-Tokyo: CRC Press.
  • Yerli C, Çakmakci T, Sahin U, Tüfenkçi Ş. 2020. The effects of heavy metals on soil, Plant, water and human health. Türk Doğa ve Fen Dergisi. 9(Özel Sayı):103–114. doi:10.46810/tdfd.718449.
  • Yeşilsoy MŞ, Aydın M. 1993. Soil physics. Turkey: Çukurova University, Faculty of Agriculture Textbook; p. 20–50.
  • Zhang G, Bai J, Xi M, Zhao Q, Lu Q, Jia J. 2016. Soil quality assessment of coastal wetlands in the yellow river delta of China based on the minimum data set. Ecol Indic. 66:458–466. doi:10.1016/j.ecolind.2016.01.046.
  • Zhang C, Xue S, Liu GB, Song ZL. 2011. A comparison of soil qualities of different revegetation types in the Loess Plateau, China. Plant Soil. 347(1–2):163–178. doi:10.1007/s11104-011-0836-5.
  • Zhou ZH. 2018. A brief introduction to weakly supervised learning. Natl Sci Rev. 5(1):44–53. doi:10.1093/nsr/nwx106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.