51
Views
0
CrossRef citations to date
0
Altmetric
Research article

Straw, biochar, and nanocarbon altered the enzymatic reaction kinetics and thermodynamic process of catalase in the black soil under continuous warming

, , , , , , , & show all
Pages 3637-3650 | Received 09 Dec 2022, Accepted 13 Oct 2023, Published online: 25 Oct 2023

References

  • Aacharya R, Chhipa H. 2020. Nanocarbon fertilizers: implications of carbon nanomaterials in sustainable agriculture production. Carbon Nanomater Agri-Food And Environ Appl. 2020:297–321.
  • Akhtar K, Wang W, Ren G, Khan A, Feng Y, Yang G. 2018. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Till Res. 182:94–102. doi: 10.1016/j.still.2018.05.007.
  • Akhtar K, Wang W, Ren G, Khan A, Feng Y, Yang G, Wang H. 2019. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ Int. 132:105092. doi: 10.1016/j.envint.2019.105092.
  • Alvarez G, Shahzad T, Andanson L, Bahn M, Wallenstein MD, Fontaine S. 2018. Catalytic power of enzymes decreases with temperature: new insights for understanding soil C cycling and microbial ecology under warming. Glob Chang Biol. 24(9):4238–4250. doi: 10.1111/gcb.14281.
  • Bao SD. 2008. Soil analysis in agricultural chemistry. Beijing (China): Agric Press.
  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem. 58:216–234. doi: 10.1016/j.soilbio.2012.11.009.
  • Chen C, Yuan CP, Xu ZB, Chen DQ, Liu JY. 2019. Comparison of the effects of different maize straw returning methods on saline soil improvement//E3S web of conferences. EDP Sci. 131:01089. doi: 10.1051/e3sconf/201913101089.
  • Chen LM, Sun SL, Yao B, Peng YT, Gao CF, Qin T, Zhou YY, Sun CR, Quan W. 2022. Effects of straw return and straw biochar on soil properties and crop growth: a review. Front Plant Sci. 13:986763. doi: 10.3389/fpls.2022.986763.
  • Chen ST, Wu J. 2019. The sensitivity of soil microbial respiration declined due to crop straw addition but did not depend on the type of crop straw. Environ Sci Pollut R. 26(29):30167–30176. doi: 10.1007/s11356-019-06185-9.
  • Dalal RC. 1985. Distribution, salinity, kinetic and thermodynamic characteristics of urease activity in a vertisol profile. Soil Res. 23(1):49–60. doi: 10.1071/SR9850049.
  • Del Carmen Cuevas-Díaz M, Martínez-Toledo Á, Guzmán-López O, Torres-López CP, Hermida-Mendoza LJ, Hermida-Mendoza LJ. 2017. Catalase and phosphatase activities during hydrocarbon removal from oil-Contaminated soil Amended with Agro-Industrial by-products and macronutrients. Water Air Soil Pollut. 228(4):1–11. doi: 10.1007/s11270-017-3336-2.
  • Du ZL, Zhao JK, Wang YD, Zhang QZ. 2017. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J Soils Sediments. 17:581–589. doi: 10.1007/s11368-015-1349-2.
  • Guan SY. 1986. Soil enzymes and their research methods. Beijing: China Agr Press.
  • Helland A, Wick P, Koehler A, Schmid K, Som C. 2007. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Persp. 115(8):1125–1131. doi: 10.1289/ehp.9652.
  • Hu L, Li S, Li K, Huang H, Wan W, Huang Q, Li Q, Li Y, Deng H, He T. 2020. Effects of two types of straw biochar on the mineralization of soil organic carbon in farmland. Sustainability. 12(24):10586. doi: 10.3390/su122410586.
  • Huang R, Gao M, Wan Y-L, Tian D, Tao R, Wang F-L. 2016. Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils. Environ Sci. 37:4446–4456.
  • Ji BY, Hu H, Zhao YL, Mu XY, Liu K, Li CH. 2014. Effects of deep tillage and straw returning on soil microorganism and enzyme activities. Sci World J. 2014:51493. doi: 10.1155/2014/451493.
  • Jin LX, Son Y, DeForest JL, Kang YJ, Kim W, Chung H. 2014. Single-walled carbon nanotubes alter soil microbial community composition. Sci Total Environ. 466:533–538. doi: 10.1016/j.scitotenv.2013.07.035.
  • Jin ZQ, Shah T, Zhang L, Liu HY, Peng S, Nie LX. 2020. Effect of straw returning on soil organic carbon in rice–wheat rotation system: a review. Food Energy Secur. 9(2):e200. doi: 10.1002/fes3.200.
  • Katsuwon J, Anderson AJ. 1990. Catalase and superoxide dismutase of root-colonizing saprophytic fluorescent pseudomonads. Appl Environ Microb. 56(11):3576–3582. doi: 10.1128/aem.56.11.3576-3582.1990.
  • Khadem A, Raiesi F. 2019. Response of soil alkaline phosphatase to biochar amendments: changes in kinetic and thermodynamic characteristics. Geoderma. 337:44–54. doi: 10.1016/j.geoderma.2018.09.001.
  • Koch O, Tscherko D, Kandeler E. 2007. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cy. 21(4):GB4017. doi: 10.1029/2007GB002983.
  • Kou TJ, Lam SK, Chen DL, Yu WW. 2018. Soil urease and catalase responses to ozone pollution are affected by the ozone sensitivity of wheat cultivars. J Agron Crop Sci. 204(4):424–428. doi: 10.1111/jac.12268.
  • Laghari M, Naidu R, Xiao B, Hu Z, Mirjat MS, Hu M, Kandhro MN, Chen Z, Guo D, Jogi Q. 2016. Recent developments in biochar as an effective tool for agricultural soil management: a review. J Sci Food Agr. 96(15):4840–4849. doi: 10.1002/jsfa.7753.
  • Li YD, Sun L. 2019. Effects of nanocarbon mixing with nitrogen fertilizer on soil microbial community structure and nutr. Chin Rice. 25:70–73+79.
  • Liang TB, Yin QS, hYl Z, Xie JP, Wang BL, Cai XJ, Guo GW, Wang JW. 2014. Effects of nanocarbon application on nitrogen absorption and utilization of flue-cured tobacco. Acta Ecologica Sinica. 34:1429–1435.
  • Liu YZ, Wang Z, Zheng KL, Cheng JM. 2022. Properties of modified nano black carbon and its Effects on soil enzyme activities. Mater Sci Forum. 1060:169–176. doi: 10.4028/p-p6558e.
  • Luo H, Feng CC, Zhao JY, Yue ZH. 2020. Kinetic and thermodynamic properties of polyphenol oxidase in petroleum contaminated soil. Res Environ Sci. 33:2621–2628.
  • Lv YJ, Yu HY, Yao FY, Cao YJ, Wei WW, Wang LC, Wang YJ. 2016. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils. Chin J Eco-Agr. 24:1456–1463.
  • Ma LJ, Kong FX, Lv XB, Wang Z, Zhou ZG, Meng YL. 2021. Responses of greenhouse gas emissions to different straw management methods with the same amount of carbon input in cotton field. Soil Till Res. 213:105126. doi: 10.1016/j.still.2021.105126.
  • Mohamed I, Bassouny MA, Abbas MH, Ming Z, Cougui C, Fahad S, Saud S, Khattak JZK, Ali S, Salem HM. 2021. Rice straw application with different water regimes stimulate enzymes activity and improve aggregates and their organic carbon contents in a paddy soil. Chemosphere. 274:129971. doi: 10.1016/j.chemosphere.2021.129971.
  • Nannipieri P, Gianfreda L, Huang PM, Senesi N, Buffle J. 1998. Kinetics of enzyme reactions in soil environments. UK: John Wiley & Sons Ltd.
  • Paz-Ferreiro J, Fu S, Méndez A, Gascó G. 2015. Biochar modifies the thermodynamic parameters of soil enzyme activity in a tropical soil. J Soils Sediments. 15(3):578–583. doi: 10.1007/s11368-014-1029-7.
  • Pokharel P, Ma Z, Chang SX. 2020. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: a global meta-analysis. Biochar. 2(1):65–79. doi: 10.1007/s42773-020-00039-1.
  • Razavi BS, Liu S, Kuzyakov Y. 2017. Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes. Soil Biol Biochem. 105:236–243. doi: 10.1016/j.soilbio.2016.11.026.
  • Rodríguez-Kábana R, Truelove B. 1982. Effects of crop rotation and fertilization on catalase activity in a soil of the southeastern United States. Plant Soil. 69(1):97–104. doi: 10.1007/BF02185708.
  • Serban A, Nissenbaum A. 1986. Humic acid association with peroxidase and catalase. Soil Biol Biochem. 18(1):41–44. doi: 10.1016/0038-0717(86)90101-X.
  • Siedt M, Schäffer A, Smith KE, Nabel M, Roß-Nickoll M, van Dongen JT. 2021. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci Total Environ. 751:141607. doi: 10.1016/j.scitotenv.2020.141607.
  • Sinsabaugh RL, Belnap J, Findlay SG, Shah J, Warnock DD, Kuehn KA, Kuske CR, Litvak ME, Martinez NG, Moorhead DL. 2014. Extracellular enzyme kinetics scale with resource availability. Biogeochemistry. 121(2):287–304. doi: 10.1007/s10533-014-0030-y.
  • Sonkar SK, Sarkar S. 2019. Prospects of nanocarbons in agriculture. Nanocarbon Compos. 2019:287–326.
  • Stpniewska Z, Wolińska A, Ziomek J. 2009. Response of soil catalase activity to chromium contamination. J Environ Sci. 21(8):1142–1147. doi: 10.1016/S1001-0742(08)62394-3.
  • Su X, Guo YL, Lu M, Feng CC, Yue ZH. 2020. Effects of three kinds of carbon addition on community structure diversity of CO2-assimilating bacterial in degraded farmland soil. Acta Sci Circ. 40:234–241.
  • Tang HM, Xiao XP, Li C, Cheng KK, Shi LH, Pan XC, Li WY, Wen L, Wang K. 2021. Impacts of short-term tillage and crop residue incorporation managements on soil microbial community in a double-cropping rice field. Arch Agron Soil Sci. 67(4):1–10. doi: 10.1080/03650340.2020.1787387.
  • Teng Q, Zhang D, Niu X, Jiang CL. 2018. Influences of application of slow-release nano-fertilizer on green pepper growth, soil nutrients and enzyme activity. IOP Conf Ser: Earth Env Sci. 208:012014. doi: 10.1088/1755-1315/208/1/012014.
  • Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. 2010. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. Soil Enzymol. 22:245–258.
  • Weigand S, Auerswald K, Beck T. 1995. Microbial biomass in agricultural topsoils after 6 years of bare fallow. Boil Fert Soils. 19(2–3):129–134. doi: 10.1007/BF00336148.
  • Xu ZF, Tang Z, Wan C, Xiong P, Cao G, Liu Q. 2010. Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan. Chin J Appl Ecol. 21:2727–2733.
  • Yakushev AV, Kuznetsova IN, Blagodatskaya EV, Blagodatsky SA. 2014. Temperature dependence of the activity of polyphenol peroxidases and polyphenol oxidases in modern and buried soils. Eurasian Soil Sc. 47(5):459–465. doi: 10.1134/S1064229314050263.
  • Yu ZQ, Ren FP. 2014. Material properties in advances in organic fertilizer. Appl Mech Mater. 730:235–240. doi: 10.4028/www.scientific.net/AMM.730.235.
  • Zhan W, Yue ZH, Guo YL, Zhao JY, Guo YX, Li JW. 2021. Effects of carbons addition on soil carbon transformation and productivity of crop. Environ Sci Technol. 44:87–93.
  • Zhang M, Cheng G, Feng H, Sun B, Zhao Y, Chen H, Chen J, Dyck M, Wang X, Zhang J, et al. 2017. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ Sci Pollut R. 24(11):10108–10120. doi: 10.1007/s11356-017-8505-8.
  • Zhang YL, Chen LJ, Sun CX, Li DP, Duan ZH. 2010. Kinetic and thermodynamic properties of hydrolases in Northeastern China soils affected by temperature. Agrochimica. 54:232–244.
  • Zheng J, Zhang J, Gao L, Wang R, Gao J, Dai Y, Li W, Shen G, Kong F, Zhang J. 2021. Effect of straw biochar amendment on tobacco growth, soil properties, and rhizosphere bacterial communities. Sci Rep. 11(1):1–14. doi: 10.1038/s41598-021-00168-y.
  • Zhu ME. 2011. Soil enzyme kinetics and thermodynamics. Beijing: Sci Press.
  • Zhu ME, Bai HY, Dai W. 1989. Kinetic and thermodynamic characteristics of several soil catalase in Shaanxi. Acta Univ Septentrionali Occident Argic. 17:20–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.