121
Views
21
CrossRef citations to date
0
Altmetric
Articles

Floodplain soils at the Elbe river, Germany, and their diverse microbial biomass

&
Pages 259-273 | Received 06 Jun 2007, Published online: 06 May 2008

References

  • Altermann , M , Rosche , O , Wiechmann , H and Eisenmann , V . 2001 . Zustand und Eigenschaften der Auenböden sowie deren ökologische Eigenschaften nach Deichrückbau Endbericht des Teilprojektes 2 Bodenkunde und Ökologie des vom Landesamt für Umweltschutz Sachsen-Anhalt geförderten Projektes: Rückgewinnung von Retentionsflächen und Altauenreaktivierung an der Mittleren Elbe in Sachsen-Anhalt (FKZ: 0339576). 169 p. and appendix
  • Altermann , M , Rinklebe , J , Merbach , I , Körschens , M , Langer , U and Hofmann , B . 2005 . Chernozem – Soil of the Year 2005 . J Plant Nutrit Soil Sci , 168 : 725 – 740 .
  • Anderson , J PE and Domsch , K H . 1978 . A physiological method for the quantitative measurement of microbial biomass in soils . Soil Biol Biochem , 10 : 215 – 221 .
  • Anderson , T H and Domsch , K H . 1989 . Ratios of microbial biomass carbon to total organic carbon in arable soils . Soil Biol Biochem , 21 : 471 – 479 .
  • Anderson , T H and Joergensen , R G . 1997 . Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH . Soil Biol Biochem , 29 : 1033 – 1042 .
  • Bååth , E , Frostegård , A and Fritze , H . 1992 . Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline crust deposition . Appl Environ Microbiol , 58 : 4026 – 4031 .
  • Bååth , E . 2003 . The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi . Microbial Ecol , 45 : 373 – 383 .
  • Bai , Q , Gattinger , A and Zelles , L . 2000 . Characterization of microbial consortia in paddy rice soil by phospholipid analysis . Microbial Ecol , 39 : 273 – 281 .
  • Bailey , V L , Peacock , A D , Smith , J L and Bolton , H Jr . 2002 . Relationships between soil microbial biomass determined by chloroform fumigation – extraction, substrate-induced respiration, and phospholipid fatty acid analysis . Soil Biol Biochemistry , 34 : 1385 – 1389 .
  • Baum , C and Hrynkiewicz , K . 2006 . Clonal and seasonal shifts in communities of saprotrophic microfungi and soil enzyme activities in the mycorrhizosphere of Salix spp. . J Plant Nutrit Soil Sci , 169 : 481 – 487 .
  • Bossio , D A and Scow , K M . 1995 . Impact of carbon and flooding on the metabolic diversity of microbial communities in soils . Appl Environ Microbiol , 61 : 4043 – 4050 .
  • Bossio , D A and Scow , K M . 1998 . Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns . Microbial Ecol , 35 : 265 – 278 .
  • Bossio , D A , Scow , K M , Gunapala , N and Graham , K J . 1998 . Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles . Microbial Ecol , 36 : 1 – 12 .
  • Cronewitz , E , Dörter , K , Lieberoth , I and Pretzschel , M . 1974 . Standortkundliche Beurteilung der wichtigsten Auenböden der DDR als Grundlage für acker- und pflanzenbauliche sowie meliorative Maßnahmen . Arch Agron Soil Sci , 18 : 121 – 133 .
  • Drenovsky , R E , Elliott , G N , Graham , K J and Scow , K M . 2004 . Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities . Soil Biol Biochem , 36 : 1793 – 1800 .
  • Emmerling , C . 1993 . Nährstoffhaushalt und mikrobiologische Eigenschaften von Auenböden sowie die Besiedlung durch Bodentiere unter differenzierter Nutzung und Überschwemmungsdynamik, PhD Thesis , 153 Trier, , Germany : Universität Trier . and Appendix. Available from: Shaker Verlag, Aachen, Germany
  • FAO/ISRIC/ISSS . 1998 . World Reference Base for Soil Resources. World Soil Resources Report 84 , Rome : FAO .
  • Friedel , J K , Mölter , K and Fischer , W R . 1994 . Comparison and improvement of methods for determining soil dehydrogenase activity by using triphenyltetrazolium chloride and iodonitrotetrazolium chloride . Biol Fertility of Soils , 18 : 291 – 296 .
  • Frostegård , A , Bååth , E and Tunlid , A . 1993b . Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis . Soil Biol Biochem , 25 : 723 – 730 .
  • Frostegård , Å , Tunlid , A and Bååth , E . 1991 . Microbial biomass measured as total lipid phosphate in soils of different organic content . J Microbiol Methods , 14 : 151 – 163 .
  • Frostegård , Å , Tunlid , A and Bååth , E . 1993a . Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals . Appl Environ Microbiol , 59 : 3605 – 3617 .
  • Gambrell , R P , DeLaune , R D and Patrick , W H Jr . 1991 . “ Redox processes in soils following oxygen depletion ” . In Plant life under oxygen deprivation , Edited by: Jackson , M B , Davies , D D and Lambers , H . 101 – 117 . The Hague, , The Netherlands : SPB Academic Publishing bv .
  • Green , C T and Scow , K M . 2000 . Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers . Hydrogeol J , 8 : 126 – 141 .
  • Griffiths , B S , Kuan , H L , Ritz , K , Glover , L A , McCaig , A E and Fenwick , C . 2004 . The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil . Microbial Ecol , 47 : 104 – 113 .
  • Groffman , P M , Eagan , P , Sullivan , W M and Lemunyon , J L . 1996 . Grass species and soil type effects on microbial biomass and activity . Plant Soil , 183 : 61 – 67 .
  • Heinemeyer , O , Insam , H , Kaiser , E A and Walenzik , G . 1989 . Soil microbial biomass and respiration measurements: An automated technique based on infra-red gas analysis . Plant Soil , 1–6 : 191 – 195 .
  • Kandeler , E , Tscherko , D and Wessolek , G . 1998 . “ Reaktion von Mikroorganismen auf Bodenkontaminationen ” . In Mobilität & Wirkung von Schadstoffen in urbanen Böden Edited by: Renger , M , Alaily , F and Wessolek , G . 100 – 107 . Bodenökologie und Bodengenese 26
  • Kimura , M and Asakawa , S . 2006 . Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis . Biol Fertility Soils , 43 : 20 – 29 .
  • Klamer , M and Bååth , E . 2004 . Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9 . Soil Biol Biochem , 36 : 57 – 65 .
  • Klimanek , E M and Matejko , C . 1997 . Die Wirkung von Schadstoffkontaminationen auf bodenbiologische Parameter von ausgewählten Flächen der Muldeaue. I. Mitteilung: Einfluss von Schadstoffbelastungen auf die mikrobielle Aktivität des Bodens . Arch Agron Soil Sci , 41 : 305 – 312 .
  • Kourtev , P S , Ehrenfeld , J G and Haggblom , M . 2003 . Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities . Soil Biol Biochem , 35 : 895 – 905 .
  • Kutilek , M and Nielsen , D R . 2007 . Interdisciplinarity of hydropedology . Geoderma , 138 : 252 – 260 .
  • Langer , U and Klimanek , E M . 2006 . Soil microbial diversity of four German long-term field experiments . Arch Agron Soil Sci , 52 : 507 – 523 .
  • Lehnhard , G . 1956 . Die Dehydrogenaseaktivität des Bodens als Maß für die Mikroorganismentätigkeit im Boden . Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde , 73 : 1 – 11 .
  • Lin , H S , Bouma , J and Pachepsky , Y . 2006 . Revitalizing pedology through hydrology and connecting hydrology to pedology . Geoderma , 131 : 255 – 256 .
  • Lundquist , E J , Jackson , L E and Scow , K M . 1999b . Wet-dry cycles affect dissolved organic carbon in two California agricultural soils . Soil Biol Biochem , 31 : 1031 – 1038 .
  • Lundquist , E J , Scow , K M , Jackson , L E , Uesugi , S L and Johnson , C R . 1999a . Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle . Soil Biol Biochem , 31 : 1661 – 1675 .
  • Macalady , J L , Mack , E E , Nelson , D C and Scow , K M . 2000 . Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California . Appl Environ Microbiol , 66 : 1479 – 1488 .
  • McCulley , R L and Burke , I C . 2004 . Microbial community composition across the Great Plains: Landscape versus regional variability . Soil Sci Soc Am J , 68 : 106 – 115 .
  • Megonigal , J P , Faulkner , S P and Patrick , W H . 1996 . The microbial activity season in southeastern hydric soils . Soil Sci Soc Am J , 60 : 1263 – 1266 .
  • Morgan , J and Winstanley , C . 1997 . “ Microbial biomarkers ” . In Modern soil microbiology , Edited by: van Elsas , J , Trevors , J and Wellington , E . 331 – 352 . New York : Marcel Dekker, Inc .
  • Munsell . 1994 . Soil color charts , Revised ed , Macbeth Division of Kollmorgan Instruments Corporation .
  • Nakamura , A , Tun , C C , Asakawa , S and Kimura , M . 2003 . Microbial community responsible for the decomposition of rice straw in a paddy field: Estimation by phospholipid fatty acid analysis . Biol Fertility Soils , 38 : 288 – 295 .
  • Obbard , J P , Sauerbeck , D and Jones , K C . 1994 . Dehydrogenase activity of the microbial biomass in soils from a field experiment amended with heavy metal contaminated sewage sludges . Sci Total Environ , 142 : 157 – 162 .
  • Orchard , V A and Cook , F J . 1983 . Relationship between soil respiration and soil moisture . Soil Biol Biochem , 15 : 447 – 453 .
  • Orchard , V A , Cook , F J and Corderoy , D M . 1992 . Field and laboratory studies on the relationships between respiration and moisture for two soils of contrasting fertility status . Pedobiologia , 36 : 21 – 33 .
  • Overesch , M , Rinklebe , J , Broll , G and Neue , H-U . 2007 . Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany) . Environ Pollution , 145 : 800 – 812 .
  • Pennanen , T . 2001 . Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH – a summary of the use of phospholipid fatty acids, Biolog® and 3H-thymidine incorporation methods in field studies . Geoderma , 100 : 91 – 126 .
  • Pennanen , T , Frostegård , A , Fritze , H and Bååth , E . 1996 . Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests . Appl Environ Microbiol , 62 : 420 – 428 .
  • Poret-Peterson , A T , Ji , B , Engelhaupt , E and Gulledge , J . 2007 . Soil microbial biomass along a hydrologic gradient in a subsiding coastal bottomland forest: Implications for future subsidence and sea-level rise . Soil Biol Biochem , 39 : 641 – 645 .
  • Praveen-Kumar , N N and Tarafdar , J C . 2003 . 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes . Biol Fertility Soils , 38 : 186 – 189 .
  • Rajendran , N , Matsuda , O , Imamura , N and Urushigawa , Y . 1992 . Variation in microbial biomass and community structure in sediments of Eutrophic Bays as determined by phospholipid ester-linked fatty acids . Appl Environ Microbiol , 58 : 562 – 571 .
  • Ravit , B , Ehenfeld , J G and Häggblom , M M . 2006 . Effects of vegetation on root-associated microbial communities: A comparison of disturbed versus undisturbed estuarine sediments . Soil Biol Biochem , 38 : 2359 – 2371 .
  • Rinklebe , J . 2004 . Differenzierung von Auenböden der Mittleren Elbe und Quantifizierung des Einflusses von deren Bodenkennwerten auf die mikrobielle Biomasse und die Bodenenzymaktivitäten von β-Glucosidase, Protease und alkalischer Phosphatase. [Ph.D. Thesis] , 113 Halle, , Germany : Martin-Luther-Universität Halle-Wittenberg. Landwirtschaftliche Fakultät . and Appendix [with English summary]
  • Rinklebe , J and Langer , U . 2006 . Microbial diversity in three floodplain soils at the Elbe River (Germany) . Soil Biol Biochem , 38 : 2144 – 2151 .
  • Rinklebe , J , Franke , C and Neue , H U . 2007 . Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants . Geoderma , 141 : 210 – 223 .
  • Rinklebe , J , Heinrich , K and Neue , H U . 2000a . “ Auenböden im Biosphärenreservat Mittlere Elbe - ihre Klassifikation und Eigenschaften ” . In Stoffhaushalt von Auenökosystemen. Böden und Hydrologie, Schadstoffe, Bewertungen , Edited by: Friese , K , Witter , B , Miehlich , G and Rode , M . 37 – 46 . Springer Verlag .
  • Rinklebe , J , Helbach , C , Franke , F and Neue , H U . 2000b . Großmaßstäbige Bodenformenkarte der ‘Schöneberger Wiesen’ bei Steckby im Biosphärenreservat Mittlere Elbe. (Large scale soil mapping of wetland soils at the Elbe River) . Angewandte Landschaftsökologie , 37 : 325 – 328 . iIn German with English summary]
  • Sarathchandra , S U , Perrott , K W , Boase , M R and Waller , J E . 1988 . Seasonal changes and the effects of fertiliser on some chemical, biochemical and microbiological characteristics of high-producing pastoral soil . Biol Fertility Soils , 6 : 328 – 335 .
  • Schipper , L A and Lee , W G . 2004 . Microbial biomass, respiration and diversity in ultramafic soils of West Dome, New Zealand . Plant Soil , 262 : 151 – 158 .
  • Schj⊘nning , P , Thomsen , I K , Moldrup , P and Christensen , B T . 2003 . Linking soil microbial activity to water- and air-phase contents and diffusivities . Soil Sci Soc Am J , 67 : 156 – 165 .
  • Schlichting , E , Blume , H P and Stahr , K . 1995 . Bodenkundliches Praktikum , 2nd ed , 295 Berlin, Wien : Blackwell Wissenschaftsverlag .
  • Schubert , R , Hilbig , W and Klotz , S . 1995 . Bestimmungsbuch der Pflanzengesellschaften Mittel- und Nordostdeutschlands , 403 Jena-Stuttgart. G. Fischer .
  • Skujins , J . 1976 . Extracellular enzymes in soil . Crit Rev Microbiol , 4 : 383 – 421 .
  • Söderberg , K H , Probanza , A , Jumpponen , A and Bååth , E . 2004 . The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil– and cfu – PLFA techniques . Appl Soil Ecol , 25 : 135 – 145 .
  • Sparling , G P . 1992 . Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter . Austral J Soil Res , 30 : 195 – 207 .
  • Sparling , G P . 1997 . “ Soil microbial biomass, activity and nutrient cycling as indicators of soil health ” . In Biological indicators of soil health , Edited by: Pankhurst , C E , Doube , B M and Gupta , V VSR . 97 – 119 . Wallingford, Oxon, , UK : CAB International Publishing .
  • Tabatabai , M A . 1982 . “ Soil enzymes ” . In Methods of soil analysis. Part 2: Chemical and microbiological properties , Edited by: Page , A L and Keeney , D R . 903 – 948 . Madison, WI : Soil Science Society of America .
  • Thalmann , A . 1968 . Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC) . Landwirtsch Forsch , 21 : 249 – 258 .
  • Tischer , S . 2005 . Microbial biomass and enzyme activities on soil monitoring sites in Saxony-Anhalt, Germany . Arch Agron Soil Sci , 51 : 673 – 685 .
  • Vaisvalavicius , R , Motuzas , A , Prosycevas , I , Levinskaite , L , Zakarauskaite , D , Grigaliuniene , K and Butkus , V . 2006 . Effect of heavy metals on microbial communities and enzymatic activity in soil column experiment . Arch Agron Soil Sci , 52 : 161 – 169 .
  • Van Gestel , M , Ladd , J N and Amato , M . 1992 . Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles . Soil Biol Biochem , 24 : 103 – 111 .
  • Van Gestel , M , Merckx , R and Vlassak , K . 1993 . Microbial biomass and activity in soils with fluctuating water contents . Geoderma , 56 : 617 – 626 .
  • Vestal , J R and White , D C . 1989 . Lipid analysis in microbial ecology . Bioscience , 39 : 535 – 541 .
  • Wälder , K , Wälder , O , Rinklebe , J and Menz , J . 2007 . Estimation of soil properties with geostatistical methods in floodplains . Arch Agron Soil Sci , In press
  • Wardle , D A . 1992 . A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil . Biological Rev , 67 : 321 – 358 .
  • Wardle , D A . 1998 . Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Review . Soil Biol Biochem , 30 : 1627 – 1637 .
  • Wardle , D A and Parkinson , D . 1990 . Comparison of physiological techniques for estimating the response of the soil microbial biomass to soil moisture . Soil Biol Biochem , 22 : 817 – 823 .
  • Wardle , D A and Ghani , A . 1995 . A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development . Soil Biol Biochem , 27 : 1601 – 1610 .
  • West , A W , Sparling , G P , Speir , T W and Wood , J M . 1988 . Dynamics of microbial C, N-flush and ATP, enzyme activities of gradually dried soils from a climasequence . Austral J Soil Res , 26 : 519 – 530 .
  • White , D C , Davis , W M , Nickels , J S , King , J D and Bobbie , R J . 1979 . Determination of the sedimentary microbial biomass by extractable lipid phosphate . Oecologia , 40 : 51 – 62 .
  • Williams , M A and Rice , C W . 2007 . Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community . Appl Soil Ecol , 35 : 535 – 545 .
  • Witt , C . 1997 . Soil microbial biomass and nitrogen supply in irrigated lowland rice soils as affected by management practices. PhD Thesis , 117 Gießen, , Germany : Justus-Liebig-Universität Gießen, Germany . and Appendix. Available from: Wissenschaftlicher Fachverlag, Justus-Liebig-Universität Gießen, Germany
  • Zelles , L . 1997 . Phospholipid fatty acid profiles in selected members of soil microbial communities . Chemosphere , 35 : 275 – 294 .
  • Zelles , L . 1999 . Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review . Biol Fertility Soils , 29 : 111 – 129 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.