Publication Cover
SIL Proceedings, 1922-2010
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen
Volume 25, 1993 - Issue 1
10
Views
7
CrossRef citations to date
0
Altmetric
II. Chemical Limnology

Humic compounds from wetlands: Complexation, inactivation, and reactivation of surface-bound and extracellular enzymes

Pages 122-128 | Published online: 01 Dec 2017

References

  • Beart, J. E., Lilley, T. H. & Haslam, E., 1985: Plant polyphenols — secondary metabolism and chemical defense: Some observations. — Phytochemistry 24: 33–38.
  • Cotner, J. C. & Wetzel, R. G., 1991: 5′-nucleotidase activity and inhibition in a eutrophic and an oligotrophic lake. — Appi. Environ. Microbiol. 57: 1306–1312.
  • Faust, B. C. & Holgné, J., 1987: Sensitized photooxidation of phenols by fulvic acid and in natural waters. — Environ. Sci. Technol. 21: 957–964.
  • Gjessing, E. T. & Gjerdahl, T. C., 1970: Influence of ultra-violet radiation on aquatic humus. — Vatten 26: 144–145.
  • Grieve, I. C., 1991: Dissolved organic carbon trends in small streams, land use effects and models of temporal variation. — In: Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation. — IAHS Publ. 203: 201–208.
  • Haslam, E., 1988: Plant polyphenols (syn. vegetable tannins) and chemical defense — a reappraisal. — J. Chem. Ecol. 14: 1789–1805.
  • Haslam, E. & Lilley, T. H., 1988: Natural astringency in foodstuffs — a molecular interpretation. — CRC Cm. Rev. Food Sci. Nutr. 27: 1–40.
  • Hessen, D.O., 1985: The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. — FEMS Microbiol. Ecol. 31: 215–223.
  • Hessen, D.O. 1992: Dissolved organic carbon in humic lakes: Effects on bacterial production and respiration. — In: Salonen, K., Kairesalo, T. & Jones, R. I. (eds.): Dissolved Organic Matter in Lacustrine Ecosystems. — Hydrobiologia 229: 115–123.
  • Jones, S. E. & Lock, M. A., 1989: Hydrolytic extracellular enzyme activity in heterotrophic biofilms from two contrasting streams. — Freshwat. Biol. 22: 289–296.
  • Kim, B. & Wetzel, R. G., 1993: The effect of dissolved humic substances on the alkaline phosphatase and growth of microalgae. — Verh. Internat. Verein. Limnol. 25: 129–132.
  • Ladd, J. N., 1985: Soil enzymes. — In: Vaughan, D. &C Malcolm, R. E. (eds.): Soil Organic Matter and Biological Activity. — pp. 175–221. M. Nijhof/Junk, Dordrecht.
  • Manny, B. A., Miller, M. C. & Wetzel, R. G., 1971: Ultraviolet combustion of dissolved organic nitrogen compounds in lake waters. — Limnol. Oceanogr. 16: 71–85.
  • Mickle, A. M. & Wetzel, R. G., 1979: Effectiveness of submersed angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. III. Refractory organic carbon. — Aquat. Bot. 6: 339–355.
  • Mitsch, W. J. & Gosselink, J. G., 1986: Wetlands. — Van Nostrand Reinhold, New York.
  • Nissenbaum, A. & Serban, A., 1987: Enzymatic (A) activity associated with humic substances in deep sediments from the Cariaco Trench and Walvis Ridge. — Geochim. Cosmocbim. Acta 51: 373–378.
  • Otsuki, A. & Wetzel, R. G., 1972: Coprecipitation of phosphates with carbonates in a marl lake. — Limnol. Oceanogr. 17: 763–767.
  • Otsuki, A. & Wetzel, R. G., 1973: Interaction of yellow organic acids with calcium carbonate in fresh water. — Limnol. Oceanogr. 18: 490–493.
  • Otsuki, A. & Wetzel, R. G. 1974: Calcium and total alkalinity budgets and calcium carbonate precipitation of a small hard-water lake. — Arch. Hydrohiol. 73: 14–30.
  • Perdue, E. M. & Gjessing, E. T., 1990: Organic Acids in Aquatic Ecosystems. — 345 pp. John Wiley & Sons, Chichester.
  • Pettersson, K. & Jansson, M., 1978: Determination of phosphatase activity in lake water — a study of methods. — Verh. Internat. Verein. Limnol. 20: 1226–1230.
  • Rattray, M. R., Howard-Williams, C. & Brown, J. M. A., 1991: Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes. — Aquat. Bot. 40: 225–237.
  • Serrano, L. & Boon, P. I., 1991: Effect of polyphenolic compounds on alkaline phosphatase activity: Its implication for phosphorus regeneration in Australian freshwaters. — Arch. Hydrohiol. 123: 1–19.
  • Sharitz, R. R. & Gibbons, J. W. (Eds.), 1989: Freshwater Wetlands and Wildlife. — DOE Symp. Ser. 61. US Dept. Energy, Oak Ridge, TN.
  • Spencer, C. M., Cai, Y., Martin, R., Gaffney, S. H., Goulding, P. N., Magnolato, D., Lilley, T. H. & Haslam, E., 1988: Polyphenol complexation — some thoughts and observations. — Phytochemistry 27: 2397–2409.
  • Stewart, A. J. & Wetzel, R. G., 1981: Dissolved humic materials: Photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. — Arch. Hydrohiol. 92: 265–286.
  • Stewart, A. J. & Wetzel, R. G. 1982 a: Phytoplankton contribution to alkaline phosphatase activity. — Arch. Hydrohiol. 93: 265–271.
  • Stewart, A. J. & Wetzel, R. G. 1982 b: Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. — Freshwat. Biol. 12: 369–380.
  • Strome, D. J. & Miller, M. C., 1978: Photolytic changes in dissolved humic substances. — Verh. Internat. Verein. Limnol. 20: 1248–1254.
  • Tipping, E., Backes, C. A. & Hurley, M. A., 1988: The complexation of protons, aluminum and calcium by aquatic humic substances: A model incorporating binding-site heterogeneity and macroionic effects. — Water Res. 22: 597–611.
  • Wetzel, R. G., 1969: Factors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard-water lakes. — Verh. Internat. Verein. Limnol. 17: 72–85.
  • Wetzel, R. G. 1979: The role of the littoral zone and detritus in lake metabolism. — In: Likens, G. E., Rodhe, W. & Serruya, C. (eds.): Symposium on Lake Metabolism and Lake Management. — Arch. Hydrohiol. Beth. Ergebn. Limnol. 13: 145–161.
  • Wetzel, R. G. 1981: Longterm dissolved and particulate alkaline phosphatase activity in a hard-water lake in relation to lake stability and phosphorus enrichments. — Verh. Internat. Verein. Limnol. 21: 337–349.
  • Wetzel, R. G. 1983: Limnology. — 2nd Edition, 858 pp. Saunders College Pubi., Philadelphia.
  • Wetzel, R. G. 1984: Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. — Bull. Mar. Sci. 35: 503–509.
  • Wetzel, R. G. 1989: Wetland and littoral interfaces of lakes: Productivity and nutrient regulation in the Lawrence Lake ecosystem. — In: Sharitz, R. R. & Gibbons, J. W. (eds.): Freshwater Wetlands and Wildlife. — DOE Symposium Series 61. pp. 283–302. US DOE Office Sci. Technical Info., Oak Ridge, TN.
  • Wetzel, R. G. 1990: Land-water interfaces: Metabolic and limnological indicators. Edgardo Baldi Memorial Lecture. — Verh. Internat. Verein. Limnol 24: 6–24.
  • Wetzel, R. G. 1991: Extracellular enzymatic interactions in aquatic ecosystems: Storage, redistribution, and interspecific communication. — In: Chróst, R. J. (ed.): Microbial Enzymes in Aquatic Environments: 6–28. Springer-Verlag, New York.
  • Wetzel, R. G. 1992: Gradient-dominated ecosystems: Sources and regulatory functions of dissolved organic matter in freshwater ecosystems. — Hydrobiologia 229: 181–198.
  • Wetzel, R. G. 1993: Microcommunities and microgradients: Linking nutrient regeneration and high sustained aquatic primary production. — Amer. Nat. (Submitted).
  • Wetzel, R. G. & McGregor, D. L., 1968: Axenic culture and nutritional studies of aquatic macrophytes. — Amer. Midland Nat. 80: 52–64.
  • Wetzel, R. G. & Otsuki, A., 1974: Allochthonous organic carbon of a marl lake. — Arch. Hydrohiol. 73: 31–56.
  • Wetzel, R. G. & Ward, A. K., 1992: Primary production. — In: Calow, P. & Petts, G. E. (eds.): Rivers Handbook 354–369. Blackwell Scientific Pubis., Oxford.
  • White, W. S. & Wetzel, R. G., 1975: Nitrogen, phosphorus, particulate and colloidal carbon content of sedimenting seston of a hard-water lake. — Verh. Internat. Verein. Limnol. 19: 330–339.
  • Zepp, R. G., Baughman, G. L. & Schlotzhauer, P. F., 1981: Comparison of photochemical behavior of various humic substances in water. I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. — Chemosphere 10: 109–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.