71
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Bioceramics—A New Era

&
Pages 171-192 | Received 17 Oct 2005, Published online: 04 Nov 2014

References

  • L. L. Hench and J. Wilson, An Introduction to Bioceramics, World Scientific, London, UK (1993).
  • A. C. Lawson and J. T. Czernuska, “Collagen-Calcium Phosphate Composites,” Proc. Instt. Mech. Engg. Part H, 212, 413–25 (1998).
  • L. L. Hench and E. C. Ethridge, Biomaterials: An Interfacial Approach, Academic Press, NewYork, USA (1982).
  • J. D. Preston, “Properties in Dental Ceramics,” in: Proc. IV Int. Symp. Dental Materials, Quintessa, Chicago, IL (1988).
  • B. Kundu and D. Basu “Ceramics for Biomedical Applications—An Insight,” Science and Culture, 71, 144–58 (2005).
  • S. F. Hulbert, J. C. Bokros, L. L. Hench, J. Wilson and G. Heimke, “Ceramics in Clinical Applications: Past, Present and Future,” pp. 189–213 in: High Tech Ceramics, Ed. P. Vincenzini, Elsevier, Amsterdam, The Netherlands (1987).
  • P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvolet, L. Sedel and P. Boritin, “Biomechanical Compatibility and Design of Ceramic Implants for Orthopedic Surgery,” p. 234 in: Bioceramics: Material Characteristics vs. in vivo Behaviour, Vol. 523, Eds. P. Ducheyne and J. Lemons, Annals of New York Academy of Science, New York, USA (1988).
  • P. M. Boutin, “A View of 15 Year Results Obtained Using the Alumina-Alumina Hip Joint Replacement,” p. 297 in: Ceramics in Clinical Applications, Ed. P. Vincenzini, Elsevier, New York, USA (1987).
  • J. Black and G. Hastings, Handbook of Biomaterial Properties, Chapman and Hall, London, UK (1998).
  • H. Plenk, “Biocompatibility of Ceramics in Joint Prostheses,” pp. 269–85 in: Biocompatibility of Orthopedic Implants, Vol. 1, CRC Press, Boca Raton, Florida, USA (1982).
  • A. Chanda, D. Basu, S. Chatterjee and M. K. Basu, “Wear and Friction Behaviour of Biomaterials for Total Hip Replacement,” Trans. Pow. Met. Ass. Ind., 22, 40 (1995).
  • G. Willmann, “Ceramic Components for Total Hip Arthroplasty,” Orthopedics Int. Edn., 5, 110–15 (1997).
  • E. Dorre and W. Dawihl, “Ceramic Hip Endoprostheses,” pp. 113–27 in: Mechanical Properties of Biomaterials, Eds. G. W. Hastings and D. F. Williams, Wiley, New York, USA (1980).
  • D. Basu, “Fatigue Behaviour of Fine-Grained Alumina Hip-Joint Heads Under Normal Walking Conditions,” Sadhana, 28, 589–600 (2003).
  • L. L. Hench, “Bioceramics,” J. Am. Ceram. Soc., 81, 1705–28 (1998).
  • A. Chanda, A. Mukherjee, D. Basu and S. Chatterjee, “Wear and Friction Behaviour of UHMWPE-Alumina Combination for Total Hip Replacement,” Ceram. Int., 23, 237–47 (1997).
  • J. C. Bokros, “Carbon Biomedical Devices,” Carbon, 15, 353–72 (1977).
  • A. D. Haubold, R. A. Yapp and J. D. Bokros, “Carbons,” pp.95–101 in: Concise Encyclopedia of Medical and Dental Materials, Ed. D. Williams, Pergamon Press, New York, USA (1990).
  • R. H. Dauskardt and R. O. Ritchie, “Pyrolytic Carbon Coatings,” p. 261 in: An Introduction to Bioceramics, Eds. L. L. Hench and J. Wilson, World Scientific, London, UK (1993).
  • J. W. Boretos, “Advances in Bioceramics,” Adv. Ceram. Mater., 2, 15–30 (1987).
  • J. C. Bokros, “Carbon in Medical Devices,” Ceram. Int., 9, 3–7 (1983).
  • A. Haubald, H. S. Shim and J. C. Bokros, pp. 3–42 in: Biocompatibility of Clinical Implant Materials, Vol. 2, Ed. D. E. Williams, CRC Press, Boca Raton, Florida, USA (1981).
  • J. C. Bokros, US Patent No. 3, 526, 005 (1971).
  • J. C. Bokros, L. D. LaGrange and F. J. Schoen, “Control of Structure of Carbon for Use in Bioengineering,” pp. 103–71 in: Chemistry and Physics of Carbon, Vol. 6, Ed. P. L. Walker Jr., Marcel Dekker, New York, USA (1972).
  • A. J. Collins, F. L. Shapiro, P. Keshaviak, K. Jlstrup, R. Andersen, T. O'Brien, T. J. Martinez and L. C. Constentino, Trans. Am. Soc. Artif. Intern. Organs’, 27, 308 (1981).
  • K. de Groot, Bioceramics of Calcium Phosphate, CRC Press, Boca Raton, Florida, USA (1983).
  • D. F. Williams, “The Biocompatibility and Clinical Uses of Calcium Phosphate Ceramics,” pp. 43–46 in: Biocompatibility of Tissue Analogs, Vol. II, Ed. D. F. Williams, CRC Press, Boca Raton, Florida, USA (1985).
  • R. F. Le Geros, G. Bone and R. Le Geros, “Type of H2O in Human Enamel and in Precipitated Apatites,” Calcif. Tissue Res., 26, 111 (1978).
  • K. de Groot, “Effect of Porosity and Physicochemical Properties on the Stability, Resorption and Strength of Calcium Phosphate Ceramics,” pp. 227–34 in: Bioceramics: Material Characteristics vs. in vivo Behaviour, Vol. 523, Eds. P. Ducheyne and J. Lemons, Annals of New York Academy of Science, New York, USA (1988).
  • K. de Groot and R. Le Geros, pp. 268–72 in: Bioceramics: Material Characteristics vs. in vivo Behaviour, Vol. 523, Eds. P. Ducheyne and J. Lemons, Annals of New York Academy of Science, New York, USA (1988).
  • K. de Groot, C. P. A. T. Klein, J. G. C. Wolke and J. de Blieck-Hogervorst, “Chemistry of Calcium Phosphate Bioceramics,” pp. 3–15 in: Handbook of Bioactive Ceramics, Vol. II., Ed. T. Yamamuro, L. L. Hench and J. Wilson, CRC Press, Boca Raton, Florida, USA (1990).
  • M. Jarcho, “Calcium Phosphate Ceramics as Hard Tissue Prosthetics,” Clin. Orthop. Relat. Res., 157, 259–78 (1981).
  • V. P. Orlovskii, G. E. Sukhanova, Z. A. Ezhova and G. V. Rodicheva, “Hydroxyapatite Bioceramics,” Zh. Vses. Khim. O.-va. im. D. I. Mendeleeva, 36, 683–88 (1991).
  • W. Cao and L. L. Hench, “Bioactive Materials,” Ceram. Int., 22, 493–507 (1996).
  • H. J. Monma, “Processing of Synthetic Hydroxyapatite,” J. Ceram. Soc. Jpn. Dent. Res., 8, 97–102 (1980).
  • N. G. Klyuchnikov, Rukovodstvo po neorganiches komu sintezu (A Guide to Inorganic Synthesis),” Moscow: Khimiya (1965).
  • V. Kibal'chits and V. F. Komarov, “High Speed Synthesis of Hydroxyapatite Crystals,” Zh. Neorg. Khim., 25, 565–67 (1980).
  • N. Y. Turava and M. I. Yanovskaya, “Synthesis of Hydroxyapatite Crystals,” Izv. Akad. Nauk SSSR, Neorg. Mater., 19, 693–706 (1983).
  • L. L. Hench, “Bioceramics for the Future,” in: Ceramics and Society, Ed. R. J. Brook, Faenza, Techna (1995).
  • J. C. Elliort, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam, The Netherlands (1994).
  • V. A. Dubok and N. V. Ulyanin, “Synthesis, Properties and Applications of Osteotropic Substitute Materials Based on Hydroxyapatite Ceramics,” Ortop. Travmatol. Protez., 6, 26–30 (1998).
  • L. Yubao, K. de Groot, J. de Wijn, C. P. A. T. Klein and S. V. D. Meer, “Morphology and Composition of Nanograde Calcium Phosphate Needle-like Crystals Formed by Simple Hydrothermal Treatment,” J. Mater. Sci.: Mater. Med., 5, 326–31 (1994).
  • L. Yubao, C. P. A. T. Klein, J. de Wijn, S. V. D. Meer and K. de Groot, “Shape Change and Phase Transition of Needle-like Nonstoichiometric Apatite Crystals,” J. Mater. Sci.: Mater. Med., 2, 51–55 (1991).
  • S. Zhang and K. E. Gonsalves, “Preparation and Characterisation of Thermally Stable Nanohydroxyapatite,” J. Mater. Sci.: Mater. Med., 8, 25–28 (1997).
  • M. M. A. Sekar and K. C. Patil, “Combustion Synthesis and Properties of Fine-Particle Dielectric Oxide Materials,” J. Mater. Chem., 2, 739–43 (1992).
  • N. Arul Dhas and K. C. Patil, “Combustion Synthesis and Properties of Zirconia-Alumina Powders,” Ceram. Int., 20, 57–66 (1994).
  • S. K. Ghosh, S. Dutta and S. K. Roy, “Solution Combustion Synthesis of Calcium Hydroxyapatite Nanoparticles,” Trans. Ind. Ceram. Soc., 63, 27–32 (2004).
  • A. Kelly, Strong Solids, Oxford University Press, London, UK (1971).
  • W. Suchanek and M. Yoshimura, “Processing and Properties of HA-Based Biomaterials for Use as Hard Tissue Replacement Implants,” J. Mater. Res. Soc., 13, 94–103 (1998).
  • K. Hosoi, T. Hashida, H. Takahashi, N. Yamasaki and T. Korenaga, “New Processing Technique for Hydroxyapatite Ceramics by the Hydrothermal Hot-Pressing Method,” J. Am. Ceram. Soc., 79, 2771–74 (1996).
  • L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc., 75, 1489–1510 (1991).
  • R. Z. Le Geros, “Biodegradation and Bioresorption of Calcium Phosphate Ceramics,” Clin. Mater., 14, 65–88 (1993).
  • G. de With, H. J. A. van Dijk, N. Hattu and K. Prijs, “Preparation, Microstructure and Mechanical Properties of Dense Polycrystalline Hydroxyapatite,” J. Mater. Sci., 16, 1592–98 (1981).
  • V. P. Orlovskii, V. S. Komlev and S. M. Barinov, “Hydroxyapatite and Hydroxyapatite-Based Ceramics,” Inorg. Mater., 38, 973–84 (2002).
  • C. Durucan and P. W. Brown, “α-Tricalcium Phosphate Hydrolysis to Hydroxyapatite at and Near Physiological Temperature,” J. Mater. Sci.: Mater. Med., 11, 365–71 (2000).
  • J. M. Powers, M. J. Yaszemski, R. C. Thomson and A. G. Mikos, “Hydroxyapatite Fiber Reinforced Poly (α-hydroxy ester) Foams for Bone Regeneration,” Biomaterials, 19, 1935–43 (1998).
  • Y. Ota, T. Iwashita, T. Kasuga and Y. Abe, “Novel Preparation Method of Hydroxyapatite Fibers,” J. Am. Ceram. Soc., 81, 1665–68 (1998).
  • P. V. Klassen and I. G. Grishaev, Osnovy tekhniki granulirovaniya (Fundamentals of Granulation), Moscow: Khimiya (1982).
  • V. S. Komlev, S. M. Barinov and I. V. Fadeeva, “Porous Hydroxyapatite Ceramic Granules for Drug Delivery System,” Novye Tekhnol.-21 Vek, 5, 18–19 (2001).
  • V. S. Komlev, S. M. Barinov, V. P. Orlovskii and S. G. Kurdyumov, “Porous Hydroxyapatite Ceramic Granules,” Ogneupory Tekh. Keram., 5, 18–20 (2001).
  • W. Paul and C. P. Sharma, “Development of Porous Spherical Hydroxyapatite Granules: Application towards Protein Delivery,” J. Mater. Sci.: Mater. Med., 10, 383–88 (1999).
  • J. Ganeles, M. A. Listgarten and C. I. Evian, “Ultrastructure of Durapatite-Periodontal Tissue Interface in Human Intrabony Defects,” J. Periodontal., 57, 133–40 (1986).
  • H. Denissen, C. Mangano and G. Cenini, Hydroxylapatite Implants, India: Piccin Nuova Libraria, S.P.A (1985).
  • J. Seibert and S. Nyman, “Localised Ridge Augmentation in Dogs: A Pilot Study Using Membranes and Hydroxyapatite,” J. Periodontal., 61, 157–65 (1990).
  • K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield and P. A. Revell, “Quantification of Bone Ingrowth within Bone-Derived Porous Hydroxyapatite Implants of Varying Density,” J. Mater. Sci.: Mater. Med., 10, 663–70 (1999).
  • J. X. Lu, B. Flautre and K. Anselme, “Role of Interconnections in Porous Bioceramics on Bone Recolonization in vitro and in vivo,” J. Mater. Sci.: Mater. Med., 10, 111–20 (1999).
  • M. Yamamoto, Y. Tabata, H. Kawasakii and Y. Ikada, “Promotion of Fibrovascular Tissue Ingrowth into Porous Sponges by Basic Fibroblast Growth Factor,” J. Mater. Sci.: Mater. Med., 11, 213–18 (2000).
  • A. Krajewski, A. Ravaglioli, E. Roncari, P. Pinasco and L. Montanari, “Porous Ceramic Bodies for Drug Delivery,” J. Mater. Sci.: Mater. Med., 12, 763–71 (2000).
  • M. K. Sinha, D. Basu and P. S. Sen, “Porous Hydroxyapatite Ceramic and its Clinical Applications,” Interceram, 49, 102–104 (2000).
  • T. Shimizu, J. E. Zerwekh, T. Videman, K. Gill, V. Mooney, R. E. Holmes and H. K. Hagler, “Bone Ingrowth into Porous Calcium Phosphate Ceramics: Influence of Pulsing Electromagnetic Field,” J. Orthop. Res., 6, 248–59 (1988).
  • B. Kundu, M. K. Sinha and D. Basu, “Development of Bio-active Integrated Ocular Implant for Anopthalmic Human Patients,” Trends in Biomaterials and Artificial Organs, 16, 1–4 (2002).
  • C. P. A. T. Klein, J. G. C. Wolke and K. de Groot, “Stability of Calcium Phosphate Ceramics and Plasma Sprayed Coating,” pp.199–221 in: An Introduction to Bioceramics, Eds. L. L. Hench and J. Wilson, World Scientific, London, UK (1993).
  • T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, “Solutions Able to Reproduce in vivo Surface Structure Changes in Bioactive Glass-Ceramics A/W,” J. Biomed. Mater. Res., 24, 721–34 (1990).
  • F. Barre, P. Laryrolle, C. A. van Bitterswijk, K. de Groot, “Biomimetic Coatings on Titanium: A Crystal Growth Study of Octacalcium Phosphate,” J. Mater. Sci.: Mater. Med., 12, 529–34 (2001).
  • F. Barre, M. Stigter, P. Layrolle, C. A. van Blitterswijk, K. de Groot, “In vitro Dissolution of Various Calcium Phosphate Coatings on Ti-6AI-4V,” Bioceramics, 13, 67–70 (2001).
  • S. Bharati, M. K. Sinha and D. Basu, “Hydroxyapatite Coating by Biomimetic Method on Titanium Alloy Using Concentrated SBF,” Bull. Mater. Sci., 28, 101–105 (2005).
  • J. H. Welch and W. Gutt, “High Temperature Studies of the System Calcium Oxide-Phosphorus Pentoxide,” J. Chem. Soc., 4442–44 (1961).
  • B. Dickens, L. W. Schroederand W. E. Brown, “Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2, I. The Crystal Structure of Pure β-Ca3(PO4)2,” J. Solid State Chem., 10, 232–48 (1974).
  • M. K. Sinha, P. S. Sen and D. Basu, “Synthesis, Sintering and Microstructure of Beta-Tricalcium Phosphate for Prosthetic Applications,” J. Ind. Chem. Soc., 78, 386–88 (2001).
  • A. Uchida, Y. Shihto, N. Araki and K. Ono, “Slow Release of Anticancer Drugs from Porous Calcium Hydroxyapatite Ceramic,” J. Orthop. Res., 10, 440–45 (1992).
  • M. Itokazu, T. Sugiyama, T. Ohno, E. Wada and Y. Katagiri, “Development of Porous Apatite Ceramic for Local Delivery of Chemotherapeutic Agents,” J. Biomed. Mater. Res., 39, 536–38 (1998).
  • Y. Shinto, A. Uchida, F. Korkusuz, N. Avaki and K. Ono, “Calcium Hydroxyapatite Ceramic Used as a Drug Delivery System for Antibiotics,” J. Bone Joint Surg. Br., 74, 600–604 (1992).
  • M. K. Cannon and P. K. Bajpai, “Continuous Delivery of Azidothymidine by Hydroxyapatite or Tricalcium Phosphate Ceramics,” Biomed. Sci. Instrum., 31, 177–82 (1995).
  • W. Paul, N. Jerry and C. P. Sharma, “Delivery of Insulin from Hydroxyapatite Ceramic Microspheres: Preliminary in vivo Studies,” J. Biomed. Mater. Res., 61, 660–62 (2002).
  • H. A. Benghuzzi, B. G. England and P. K. Bajpai, “Tricalcium Phosphate Amino Acid Capsules as a Drug Delivery System for Steroid Hormones,” J. Biomed. Sci. Instrum., 27, 197–203 (1991).
  • P. K. Bajpai, ZCAP ceramics, US Patent No. 4, 778, 741 (1988).
  • W. J. Pories and W. H. Strain, p. 378 in: Zinc and Wound Healing in Zinc Metabolism, Ed. A. S. Prasad, Thomas, IL, Springfield (1970).
  • W. Paul and C. P. Sharma, “Ceramic Drug Delivery: A Perspective,” J. Biomater. Appl., 17, 253–64 (2003).
  • M. Otsuka, Y. Matsuda, J. L. Fox and W. I. Higuchi, “A Novel Drug Delivery System Using Self-Setting Calcium Phosphate Cement. 9 Effects of the Mixing Solution Volume on Anti Cancer Drug Release from Homogeneous Drug-Loaded Cement,” J. Pharm. Sci., 84, 733–36 (1995).
  • S. F. Hulbert, L. L. Hench, D. Forbes and L. S. Bowman, pp. 3–25 in: Ceramics in Surgery, Ed. P. Vincenzini, Elsevier, Amsterdam, The Netherlands (1983).
  • H. Brömer, K. Deutscher, B. Blencke, E. Pfeil and V. Strunz, “Properties of the Bioactive Implant Material ‘Ceravital’,” Science of Ceramics, 9, 219–25 (1977).
  • T. Kokubo, S. Ito, S. Sakka and T. Yamamuro, “Formation of a High-Strength Bioactive Glass-Ceramic in the System MgO-CaO-SiO2-P2O5,” J. Mater. Sci. 21, 536–40 (1986).
  • T. Kitsugi, T. Yamamuro and T. Kokubo, “Bonding Behaviour of a Glass-Ceramic Containing Apatite and Wollastonite in Segmental Replacement of Rabbit Tibia under Load-Bearing Conditions,” J. Bone Jt. Surg. Am., 71A, 264–72 (1989).
  • S. Yoshii, Y. Kakutani, T. Yamamuro, T. Nakamura, T. Kitsugi, M. Oka, T. Kokubo and M. Takagi, “Strength of Bonding between A/W Glass Ceramic and the Surface of Bone Cortex,” J. Biomed. Mater. Res., 22, 327–38 (1988).
  • T. Yamamuro, J. Shikata, Y. Kakutani, S. Yoshii, T. Kitsugi and K. Ono, “Novel Methods for Clinical Applications of Bioactive Ceramics,” p. 107 in: Bioceramics: Material Characteristics vs. in vivo Behaviour, Vol. 523, Eds. P. Ducheyne and J. Lemons, Annals of New York Academy of Science, New York, USA (1988).
  • T. Yamamuro, L. L. Hench and J. Wilson, Handbook of Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, Vol. I, CRC Press, Boca Raton, Florida, USA (1990).
  • T. Yamamuro, “Replacement of the Spine with Bioactive Glass-Ceramic Prostheses,” pp. 343–52 in: Handbook of Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, Vol. I, Eds. T. Yamamuro, L. L. Hench and J. Wilson, CRC Press, Boca Raton, Florida, USA (1990).
  • T. Yamamuro, “A/W Glass-Ceramic: Clinical Applications,” pp. 89–103 in: An Introduction to Bioceramics, Eds. L. L. Hench and J. Wilson, World Scientific, London, UK (1993).
  • H. R. Stanley, M. B. Hall, A. E. Clark, J. C. King, L. L. Hench and J. J. Berte, “Using 45S5 Bioglass Cones as Endosseous Ridge Maintenance Implants to Prevent Alveolar Ridge Resorptions—A 5 Year Evaluation,” Int. J. Oral Maxillofac. Implants, 12, 95–105 (1997).
  • H. R. Stanley, A. E. Clark and L. L. Hench, “Alveolar Ridge Maintenance Implants,” pp. 255–70 in: Clinical Performance of Skeletal Prostheses, Eds. L. L. Hench and J. Wilson, Chapman and Hall, London, UK (1996).
  • R. Reck, S. Storkel and A. Meyer, “Bioactive Glass-Ceramics in Middle Ear Surgery: An 8-Year Review,” p. 100 in: Bioceramics: Material Characteristics vs. in vivo Behaviour, Vol. 523, Eds. P. Ducheyne and J. Lemons, Annals of New York Academy of Science, New York, USA (1988).
  • E. Merwin, “Review of Bioactive Materials for Otologic and Maxillofacial Applications,” pp. 323–28 in: Handbook of Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, Vol. I, Eds. T. Yanamuro, L. L. Hench and J. Wilson, CRC Press, Boca Raton, Florida, USA (1990).
  • J. Wilson, E. Douek and K. Rust, “Bioglass Middle Ear Devices: Ten Year Clinical Results,” pp. 239–46 in: Bioceramics, Vol. 8, Eds. J. Wilson, L. L. Hench and D. Greenspan, Pergamon/Elsevier, Oxford, UK (1995).
  • K. Lobel, “Ossicular Replacement Prostheses,” pp. 214–36 in: Clinical Performance of Skeletal Prostheses, Eds. L. L. Hench and J. Wilson, Chapman and Hall, London, UK (1996).
  • D. Plester and K. Jahnke, “Ceramic Implants in Otologic Surgery,” Am. J. Otol., 3, 104–108 (1981).
  • W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bownman and J. Abram, “Hydroxyapatite Reinforced Polyethylene—A Mechanically Compatible Implant Material for Bone Replacement,” Biomaterials, 2, 185–86 (1981).
  • D. Bakos, M. Soldan and I. H. Fuentes, “Hydroxyapatite-Collagen-Hyaluronic Acid Composite,” Biomaterials, 20, 191–95 (1999).
  • N. Ignjatovic and K. Delijic, “The Designing of Properties of Hydroxyapatite/Poly-L-Lactide Composite Biomaterials by Hot Pressing,” J. Zeit. Metal, 92, 145–49 (2001).
  • K. E. Watson, K. S. Tenhuisen and P. W. Brown, “The Formation of Hydroxyapatite-Calcium Polyacrylate Composites,” J. Mater. Sci.: Mater. Med., 10, 205–13 (1999).
  • P. K. Bajpai and H. A. Benghuzzi, “Ceramic Systems for Long Term Delivery of Chemicals and Biologicals,” J. Biomed. Mater. Res., 22, 1245–66 (1988).
  • H. A. Benghuzzi and P. K. Bajpai, “Sustained Delivery of Difluoromethylornithine (DFMO) by Means of Implantable Ceramic Devices,” J. Invest. Surg., 1, 163–70 (1988).
  • P. K. Bajpai, “Ceramic Implantable Drug Delivery System,” TIB & A.O., 3, 50–60 (1989).
  • H. A. Benghuzzi, P. K. Bajpai and B. G. England, “The Delivery of Testosterone and Dihydrotestosterone by ALCAP Ceramic Implants in Rats,” J. Invest. Surg., 3, 197–215 (1990).
  • M. N. Nadig, “Development of a Silicon Retinal Implant: Cortical Evolved Potentials Following Focal Stimulation of the Rabit Retina with Light and Electricity,” Clin. Neurophysiol., 110, 1545–53 (1999).
  • S. Kameda, A. Honda and T. Yagi, “Real Time Image Processing with an Analog Vision Chip System,” Int. J. Neural Syst., 9, 423–28 (1999).
  • G. J. Suaning, N. H. Novell, K. Schindhelm and M. T. Coroneo, “The Bionic Eye (Electronic Visual Prosthesis): A Review,” Aust. NewZealand J. Opthalmol., 26, 195–202 (1998).
  • J. U. Meyer, “Retina Implant—A BioMEMS Challenge,” Sensors and Actuators A, 97-98, 1–9 (2002).
  • M.B. Schubert, A. Hierzenberger, H.J. Lehner and J. H. Werner, “Optimising Photodiode Arrays for the Use as Retinal Implants,” Sensors and Actuators, 74, 193–97 (1999).
  • H. Lin, N. J. Wu, F. Geiger, K. Xie and A. Ignatiev, “A Ferroelectric-Superconducting Photo-Detector,” J. Appl. Phys., 80, 7130–33 (1996).
  • K. Imachi, K. Mabuchi, T. Chinzei, Y. Abe, K. Imanishi, T. Yonezawa, A. Kouno, T. Ono, K. Atsumi and I. Fujimasa, “Blood Compatibility and Durability of the Jellyfish Valve—A Novel Polymer Membrane Valve for Artificial Heart,” in: Proc. 4th World Biomaterials Congress, Berlin (FDR) (1992).
  • F. Mast and H. A. Huysmans, “Biocompatibility of EPDM-Rubbers for Prosthetic Heart Valves,” in: Proc. 4th World Biomaterials Congress, Berlin (FDR) (1992).
  • J. Rühe and W. Knoll, pp. 565–613 in: Functional Polymer Brushes, in Supramolecular Polymers, Ed. A. Cifferi, Marcel Dekker, New York, USA (2000).
  • R. Toomey, H. Murrat, B. J. Chang, H. Zhang, R. Konradi, D. Freidank, S. Golze, O. Prucker, H. Klapproth, M. Dahm and J. Rühe, “Functional Polymeric Coatings—From Polymer Synthesis to Heart Valve Implants to Endotracheal tubes,” Euro. Cells and Mater., 6, 24–25 (2003).
  • K. Salame, G. Ouaknine, N. Razon and S. Rochkind, “The Use of Carbon Fiber Cages in Anterior Cervical Interbody Fusion,” Neurosurg. Focus, 12, 1–5 (2002).
  • M. van Dijk, T. H. Smit, M. F. Arnoe, E. H. Burger and P. I. Wuisman, “The Use of Poly-L-Lactic Acid in Lumbar Interbody Cages: Design and Biomechanical Evaluation in vitro,” Euro. Spine J., 12, 34–40 (2003).
  • M. M. Robbins, A. R. Vaccaro and L. Madigan, “The Use of Bioabsorbable Implants in Spine Surgery,” Neurosurg. Focus, 16, 1–7 (2004).
  • S. Itoh, M. Kikuchi, Y. Koyama, K. Takakuda, K. Shinomiya and J. Tanaka, “Development of an Artificial Vertebral Body Using a Novel Biomaterial, Hydroxyapatite/Collagen Composite,” Biomaterials, 23, 3919–26 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.