Publication Cover
Mineral Processing and Extractive Metallurgy
Transactions of the Institutions of Mining and Metallurgy
Volume 128, 2019 - Issue 3
246
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

In situ neutron diffraction study of the reduction of New Zealand ironsands in dilute hydrogen mixtures

, ORCID Icon, , , &
Pages 183-192 | Received 14 Mar 2017, Accepted 28 Nov 2017, Published online: 17 Jan 2018

References

  • Biswas AK. 1981. Principles of blast furnace ironmaking. Brisbane: Cootha Publishing House. p. 84.
  • Buddington AF, Lindsley DH. 1964. Iron-titanium oxide minerals and synthetic equivalents. J Petrology. 5:310–357. doi: 10.1093/petrology/5.2.310
  • Choi ME, Sohn HY. 2010. Development of green suspension ironmaking technology based on hydrogen reduction of iron oxide concentrate: rate measurements. Ironmak Steelmak. 37:81–88. doi: 10.1179/030192309X12506804200663
  • Haavik C, Stolen S, Fjellvag H, Hanfland M, Hausermann D. 2000. Equation of state of magnetite and its high-pressure modification: thermodynamics of the Fe-O system at high pressure. Am Mineral. 85:514–523. doi: 10.2138/am-2000-0413
  • Harrison RJ, Putnis A. 1998. The magnetic properties and crystal chemistry of oxide spinel solid solutions. Surv Geophys. 19:461–520. doi: 10.1023/A:1006535023784
  • Jette ER, Foote F. 1933. An X-ray study of the wüstite (FeO) solid solutions. J Chem Phys. 1:29–36. doi: 10.1063/1.1749215
  • Kolbeinsen L. 2010. Modelling of DRI processes with two simultaneously active reducing gases. Steel Res Int. 81:819–828. doi: 10.1002/srin.201000144
  • Kolbeinsen L, Onshus T. 1986. Reduction of iron ore pellets in a shaft furnace – a dynamic approach. Proceedings of the 6th Process Technology Conference; 1986 Apr. 6–9; Washington DC, US. p. 37–43.
  • Lattard D, Engelmann R, Kontny A, Sauerzapf U. 2006. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods. J Geophys Res. 111: B12S28. doi: 10.1029/2006JB004591
  • Lee S, Chevreau H, Booth N, Duyker SG, Ogilvie SH, Imperia P, Peterson VK. 2016. Powder sample-positioning system for neutron scattering allowing gas delivery in top-loading cryofurnaces. J Appl Cryst. 49:705–711. doi: 10.1107/S1600576716001965
  • Levy D, Giustetto R, Hoser A. 2012. Structure of magnetite (Fe3O4) above the Curie temperature: a cation ordering study. Phys Chem Minerals. 39:169–176. doi: 10.1007/s00269-011-0472-x
  • Longbottom RJ, Monaghan BJ, Mathieson JG. 2013. Development of a bonding phase within titanomagnetite-coal compacts. ISIJ Int. 53:1152–1160. doi: 10.2355/isijinternational.53.1152
  • Longbottom RJ, Monaghan BJ, Nightingale SA, Mathieson JG. 2012. Strength and bonding in reduced ironsand-coal compacts. Ironmak Steelmak. 40:381–389. doi: 10.1179/1743281212Y.0000000050
  • Longbottom RJ, Ostrovski O, Park P. 2006. Formation of cementite from titanomagnetite ore. ISIJ Int. 46:641–646. doi: 10.2355/isijinternational.46.641
  • Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N. 1994. Synchrotron X-ray study of the electron density in α-Fe2O3. Acta Cryst. B50:435–441. doi: 10.1107/S0108768194002284
  • McAdam GD. 1974. Instability of titanium-rich ironsands in reducing gases. Ironmak Steelmak. 1:138–150.
  • McAdam GD, Dall REA, Marshall T. 1969a. Direct reduction of New Zealand ironsand concentrates: part 1 – gaseous reduction. N Z J Sci. 12:649–668.
  • McAdam GD, Dall REA, Marshall T. 1969b. Direct reduction of New Zealand ironsand concentrates: part 2 – solid reductants. N Z J Sci. 12:669–686.
  • Néel L. 1955. Some theoretical aspects of rock magnetism. Adv Phys. 4:191–243. doi: 10.1080/00018735500101204
  • Nishitani T, Kono M. 1983. Curie temperature and lattice constant of oxidized titanomagnetite. Geophys J R Astr Soc. 74:585–600.
  • Onshus TE. 1986. Modelling and control of iron oxide reduction in a counter-current moving bed reactor. Trondheim: Norges Tekniske Høgskole. p. 16–21.
  • Park E, Lee SB, Ostrovski O, Min DJ, Rhee CH. 2004. Reduction of mixture of titanomagnetite ironsand and hematite iron ore fines by carbon monoxide. ISIJ Int. 44:214–216. doi: 10.2355/isijinternational.44.214
  • Park E, Ostrovski O. 2003. Reduction of titania-ferrous ore by carbon monoxide. ISIJ Int. 43:1316–1325. doi: 10.2355/isijinternational.43.1316
  • Park E, Ostrovski O. 2004a. Effects of preoxidation of titania-ferrous ore on the structure and reduction behaviour. ISIJ Int. 44:74–81. doi: 10.2355/isijinternational.44.74
  • Park E, Ostrovski O. 2004b. Reduction of titania-ferrous ore by hydrogen. ISIJ Int. 44:999–1005. doi: 10.2355/isijinternational.44.999
  • Sohn HY. 2007. Suspension ironmaking technology with greatly reduced energy requirement and CO2 emissions. Steel Times Int. 31:68–72.
  • Stir M, Ishizaki K, Vaucher S, Nicula R. 2009. Mechanism and kinetics of the reduction of magnetite to iron during heating in a microwave E-field maximum. J Appl Phys. 105:124901. doi:10.1063/1.3148264.
  • Wang Z, Pinson D, Chew S, Rogers H, Monaghan BJ, Pownceby MI, Webster NAS, Zhang G. 2016. Behaviour of New Zealand ironsand during iron ore sintering. Metall Mater Trans B. 47:330–343. doi: 10.1007/s11663-015-0519-3
  • Wang H, Sohn HY. 2013. Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B. 44:133–145. doi: 10.1007/s11663-012-9754-z
  • Wechsler BA, Lindsley DH, Prewitt CT. 1984. Crystal structure and cation distribution in titanomagnetites (Fe3xTixO4). Amer Mineral. 69:754–770.
  • Woodland AB, Wood BJ. 1994. Fe3O4 activities in Fe-Ti spinel solid solutions. Eur J Mineral. 6:23–38. doi: 10.1127/ejm/6/1/0023
  • Wright JB. 1964. Iron-titanium oxides in some New Zealand ironsands. N Z J Geol Geophys. 7:424–444. doi: 10.1080/00288306.1964.10422094
  • Wright JB, Lovering JF. 1965. Electron-probe microanalysis of iron-titanium oxides in some New Zealand ironsands. Mineral Mag. 35:604–621.
  • Wyckoff WG. 1963. Crystal structures, Vol. 1. New York (NY): Wiley.
  • Zhang J, Guyot F. 1999. Thermal equation of state of iron and Fe0.91Si0.09. Phys Chem Mater. 26:206–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.