556
Views
14
CrossRef citations to date
0
Altmetric
Part 1: Special Issue on River Murray Ecology

Putting the “river” back into the Lower River Murray: quantifying the hydraulic impact of river regulation to guide ecological restoration

, ORCID Icon, , & ORCID Icon
Pages 108-131 | Received 18 Jul 2017, Accepted 30 Aug 2017, Published online: 20 Sep 2017

References

  • Baxter, R. M. (1977). Environmental effects of dams and impoundments. Annual Review of Ecology and Systematics, 8, 255–283. doi:10.1146/annurev.es.08.110177.001351
  • Bednarek, A. T. (2001). Undamming rivers: A review of the ecological impacts of dam removal. Environmental Management, 27, 803–814. doi:10.1007/s002670010189
  • Bice, C. M., Gehrig, S. L., Zampatti, B. P., Nicol, J. M., Wilson, P., Leigh, S. L., & Marsland, K. (2014b). Flow-induced alterations to fish assemblages, habitat and fish–habitat associations in a regulated lowland river. Hydrobiologia, 722, 205–222. doi:10.1007/s10750-013-1701-8
  • Bice, C. M., Gehrig, S. L., & Zampatti, B. P. (2016). Pike Anabranch fish intervention monitoring 2013–2016 (South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2013/000472-3. SARDI Research Report Series No. 926) (p. 50).
  • Bice, C. M., Leigh, S. L., Nicol, J. M., & Zampatti, B. P. (2013). Changes in hydraulic complexity in the lower River Murray main channel in relation to flow variability (South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2013/000214-1. SARDI Research Report Series No. 709) (p. 32).
  • Bice, C. M., & Zampatti, B. P. (2015). The influence of weir pool raising on main channel hydraulics in the lower River Murray (South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2015/000381-1. SARDI Research Report Series No. 840) (p. 38).
  • Bice, C. M., Zampatti, B. P., Aldridge, K. A., Furst, D., Kilsby, N. N., Maxwell, S., … Wallace, T. (2014a). An assessment of the knowledge requirements to support effective provisions of environmental water in the South Australian Murray-Darling Basin: Part 2 – Development of hydro-ecological conceptual models and identification of knowledge gaps in current understanding of flow‒biota relationship (Technical Report Series No 14/18) (p. 263). Adelaide, South Australia: Goyder Institute for Water Research.
  • Bice, C. M., Zampatti, B. P., & James, C. (2016). The influence of weir pool raising on main channel hydraulics in the lower River Murray, South Australia, in 2015 (South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2015/000381-2. SARDI Research Report Series No. 904) (p. 40).
  • Biggs, B. J. F., Nikora, V. I., & Snelder, T. H. (2005). Linking scales of flow variability to lotic ecosystem structure and function. Regulated Rivers: Research & Mangement, 21, 283–298.
  • Blanch, S. J., Walker, K. F., & Ganf, G. G. (2000). Water regimes and littoral plants in four weir pools of the River Murray, Australia. Regulated Rivers: Research & Mangement, 16, 445–456. doi:10.1002/1099-1646(200009/10)16:5<445::AID-RRR596>3.0.CO;2-L
  • Bond, N., Costelloe, J., King, A., Warfe, D., Reich, P., & Balcombe, S. (2014). Ecological risks and opportunities from engineered artificial flooding as a means of achieving environmental flow objectives. Frontiers in Ecology and the Environment, 12, 386–394. doi:10.1890/130259
  • Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492–507. doi:10.1007/s00267-002-2737-0
  • Burns, A., & Walker, K. F. (2000). Effects of water level regulation on algal biofilms in the River Murray, South Australia. Regulated Rivers: Research & Management, 16, 433–444. doi:10.1002/1099-1646(200009/10)16:5<433::AID-RRR595>3.0.CO;2-V
  • CSIRO (2008). Water availability in the Murray-Darling Basin (Report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project) (p. 67). Australia: Author.
  • Dudley, R. K., & Platania, S. P. (2007). Flow regulation and fragmentation imperil pelagic-spawning riverine fishes. Ecological Applications, 17, 2074–2086. doi:10.1890/06-1252.1
  • Dyer, F. J., & Thoms, M. C. (2006). Managing river flows for hydraulic diversity: An example from an upland regulated gravel-bed river. Regulated Rivers: Research & Mangement, 22, 257–267.
  • Feld, C. K., Birk, S., Bradley, D. C., Hering, D., Kail, J., Marzin, A., … Friberg, N. (2011). From natural to degraded rivers and back again: A test of restoration ecology theory and practice. In W. Guy (Ed.), Advances in ecological research (Vol. 44, pp. 119–209). Cambridge: Academic Press.
  • Fredberg, J., & Zampatti, B. P. (2017). Fishway effectiveness and Murray cod spatial ecology during operation of the Chowilla regulator (South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2017/000349-1. SARDI Research Report Series No. 961) (p. 52). Manuscript submitted for publication.
  • Geddes, M. C. (1990). Crayfish. In N. Mackay & D. Eastburn (Eds.), The Murray (pp. 302–307). Canberra: Murray-Darling Basin Commission.
  • Jacobs, T. A. (1990). River Regulation. In N. Mackay & D. Eastburn (Eds.), The Murray (pp. 38–58). Canberra: Murray-Darling Basin Commission.
  • Kilsby, N. N. (2008). Reach-scale spatial hydraulic diversity in lowland rivers: Characterisation, measurement and significance for fish (Unpublished doctoral dissertation). School of Earth and Environmental Sciences, and School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide.
  • Kilsby, N. N., & Walker, K. F. (2010). Linking swimming ability of small freshwater fish to body form and ecological habit. Transactions of the Royal Society of South Australia, 134, 89–96. doi:10.1080/3721426.2010.10887132
  • Kilsby, N. N., & Walker, K. F. (2012). Behaviour of two small pelagic and demersal fish species in diverse hydraulic environments. River Research and Applications, 28, 543–553. doi:10.1002/rra.1466
  • Koehn, J. D., & Nicol, S. J. (2014). Comparative habitat use by large riverine fishes. Marine and Freshwater Research, 65, 164–174. doi:10.1071/MF13011
  • Lamouroux, N., & Cattaneo, F. (2006). Fish assemblages and stream hydraulics: Consistent relations across spatial scales and regions. River Research and Applications, 22, 727–737. doi:10.1002/rra.931
  • Lamouroux, N., Gore, J. A., Lepori, F., & Statzner, B. (2015). The ecological restoration of large rivers needs science-based, predictive tools meeting public expectations: An overview of the Rhône project. Freshwater Biology, 60, 1069–1084. doi:10.1111/fwb.2015.60.issue-6
  • Lancaster, J., & Downes, B. J. (2010). Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics. River Research and Applications, 26, 385–403. doi:10.1002/rra.v26:4
  • Maheshwari, B. L., Walker, K. F., & McMahon, T. A. (1995). Effects of regulation on the flow regime of the River Murray, Australia. Regulated Rivers: Research & Management, 10, 15–38. doi:10.1002/rrr.3450100103
  • Maier, H. R., Burch, M. D., & Bormans, M. (2001). Flow management strategies to control blooms of the cyanobacterium, Anabaena circinalis, in the River Murray at Morgan, South Australia. Regulated Rivers: Research & Management, 17, 637–650. doi:10.1002/rrr.623
  • Mallen-Cooper, M., Koehn, J., King, A., Stuart, I., & Zampatti, B. (2008). Risk assessment of the proposed chowilla regulator and managed floodplain inundations on fish. (Report for the South Australian Department of Water, Land and Biodiversity Conservation, Adelaide) (p. 94).
  • Mallen-Cooper, M., & Stuart, I. G. (2003). Age, growth and non-flood recruitment of two potamodromous fishes in a large semi-arid/temperate river system. River Research and Applications, 19, 697–719. doi:10.1002/(ISSN)1535-1467
  • Mallen-Cooper, M., & Zampatti, B. P. (2017). History, hydrology and hydraulics; rethinking the ecological management of large rivers. Manuscript submitted for publication.
  • McCarthy, B. (2005). Distribution of Murray crayfish (Euastacus armatus) in the Mallee Region 2004 (Murray-Darling Freshwater Research Centre, Lower Basin Laboratory, Mildura, Victoria. Technical Report 2/2005) (p. 23).
  • Murray-Darling Basin Authority. (2011). The living Murray story — One of Australia’s largest river restoration projects (MDBA publication no: 157/11). Canberra: Author.
  • Murray-Darling Basin Authority. (2012). Hydrologic modelling to inform the proposed Basin Plan - methods and results (MDBA publication no: 17/12). Canberra: Author.
  • Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405–408. doi:10.1126/science.1107887
  • Pittock, J., Finlayson, C. M., & Howitt, J. (2013). Beguiling and risky: ‘environmental works and measures’ for wetland conservation under a changing climate. Hydrobiologia, 708, 111–131. doi:10.1007/s10750-012-1292-9
  • Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The natural flow regime: A paradigm for river conservation and restoration. Bioscience, 47, 769–784. doi:10.2307/1313099
  • Puckridge, J. T., Sheldon, F., & Walker, K. F. (1998). Flow variability and the ecology of large rivers. Marine and Freshwater Research, 49, 55–72. doi:10.1071/MF94161
  • Reynolds, L. (1983). Migration patterns of five fish species in the Murray-Darling River system. Australian Journal of Marine and Freshwater Research, 34, 857–871. doi:10.1071/MF9830857
  • Sheldon, F., & Walker, K. F. (1997). Changes in biofilms induced by flow regulation could explain extinctions of aquatic snails in the lower River Murray, Australia. Hydrobiologia, 347, 97–108. doi:10.1023/A:1003019302094
  • Siebentritt, M. A., Ganf, G. G., & Walker, K. F. (2004). Effects of an enhanced flood on riparian plants of the River Murray, South Australia. River Research and Applications, 20, 765–774. doi:10.1002/(ISSN)1535-1467
  • Souter, N. J. (2017). Applying the environmental flow components approach to the Lower River Murray in South Australia. Transactions of the Royal Society of South Australia, 141(2), 132–150.
  • Souter, N. J., Wallace, T., Walter, M., & Watts, R. (2014). Raising river level to improve the condition of a semi-arid floodplain forest. Ecohydrology, 7, 334–344. doi:10.1002/eco.v7.2
  • Souter, N. J., Walter, M., & Wen, L. (2012). Weir pool surcharge and a corresponding increase in algal biofilm community diversity in the lower River Murray, South Australia. River Research and Applications, 28, 1853–1857. doi:10.1002/rra.1562
  • Statzner, B., Gore, J. A., & Resh, V. H. (1988). Hydraulic Stream Ecology: Observed Patterns and Potential Applications. Journal of the North American Benthological Society, 7, 307–360. doi:10.2307/1467296
  • Statzner, B., & Higler, B. (1986). Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology, 16, 127–139. doi:10.1111/FWB.1986.16.issue-1
  • Stewardson, M. J. (2005). Hydraulic geometry of stream reaches. Journal of Hydrology, 306, 97–111. doi:10.1016/j.jhydrol.2004.09.004
  • Thoms, M. C., & Walker, K. F. (1993). Channel changes associated with two adjacent weirs on a regulated lowland alluvial river. Regulated Rivers: Research & Management, 8, 271–284. doi:10.1002/rrr.3450080306
  • Tiffan, K. F., Kock, T. J., Haskell, C. A., Connor, W. P., & Steinhorst, R. K. (2009). Water velocity, turbulence, and migration rate of subyearling fall chinook salmon in the free-flowing and impounded Snake River. Transactions of the American Fisheries Society, 138, 373–384. doi:10.1577/T08-051.1
  • Treadwell, S., Koehn, J., & Bunn, S. (1999). Managing snags and large wooody debris. Canberra: Land and Water Resources Research and Development Corporation.
  • Walker, K. F. (1990). Mussels. In N. Mackay & D. Eastburn (Eds.), The Murray (pp. 309–314). Canberra: Murray-Darling Basin Commission.
  • Walker, K. F. (1992). The River Murray, Australia: A semi-arid lowland river. In P. A. Calow & G. E. Petts (Eds.), Rivers Handbook (Vol. 1, pp. 472–492). Oxford: Blackwell Scientific Publications.
  • Walker, K. F. (2006). Serial weirs, cumulative effects: The Lower River Murray, Australia. In R. T. Kingsford (Ed.), Ecology of desert rivers (pp. 248–279). Cambridge: Cambridge University Press.
  • Walker, K. F., Boulton, A. J., Thoms, M. C., & Sheldon, F. (1994). Effects of water-level changes induced by weirs on the distribution of littoral plants along the River Murray, South Australia. Australian Journal of Marine and Freshwater Research, 45, 1421–1438. doi:10.1071/MF9941421
  • Walker, K. F., & Thoms, M. C. (1993). Environmental effects of flow regulation on the lower River Murray, Australia. Regulated Rivers: Research & Management, 8, 103–119. doi:10.1002/rrr.3450080114
  • Wallace, T. A., Daly, R., Aldridge, K. T., Cox, J., Gibbs, M. S., Nicol, J. M., … Zampatti, B. P. (2014a). River Murray channel: Environmental water requirements: ecological objectives and targets (Technical Report Series No. 14/4). Adelaide, South Australia: Goyder Institute for Water Research.
  • Wallace, T. A., Daly, R., Aldridge, K. T., Cox, J., Gibbs, M. S., Nicol, J. M., … Zampatti, B. P. (2014b). River Murray channel environmental water requirements: Hydrodynamic modelling results and conceptual models (Technical Report Series No. 14/5). Adelaide, South Australia: Goyder Institute for Water Research.
  • Wedderburn, S. D., Hammer, M. P., Bice, C. M., Lloyd, L. N., Whiterod, N. S., & Zampatti, B. P. (2017). Flow regulation simplifies a lowland fish assemblage in the Lower River Murray, South Australia. Transactions of the Royal Society of South Australia, 141(2), 169–192.
  • Wentworth Group of Concerned Scientists. (2017). Five actions to deliver the Murray-Darling Basin Plan ‘in full and on time’ (p. 11). Sydney: Author. Retrieved from http://wentworthgroup.org/2017/06/fiveactionstodelivermdbplan/
  • Ye, Q., Giatas, G., Aldridge, K., Busch, B., Gibbs, M., Hipsey, M., … Zampatti, B. (2016). Long-term intervention monitoring for the ecological responses to environmental water delivered to the Lower Murray River selected area in 2014/15 (South Australia Research and Development Institute (Aquatic Sciences), Adelaide. Final Report to the Commonwealth Environmental Water Office) (p. 132).
  • Zampatti, B. P., Bice, C. M., & Jennings, P. R. (2010). Temporal variability in fish assemblage structure and recruitment in a freshwater deprived estuary: The Coorong, Australia. Marine and Freshwater Research, 61, 1298–1312. doi:10.1071/MF10024
  • Zampatti, B. P., Bice, C. M., Wilson, P. J., & Ye, Q. (2014). Population dynamics of Murray cod (Maccullochella peelii) in the South Australian reaches of the River Murray: A synthesis of data from 2002–2013 (South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2014/000089-1. SARDI Research Report Series No. 761) (p. 42).
  • Zampatti, B. P., & Leigh, S. J. (2013a). Within-channel flows promote spawning and recruitment of golden perch, Macquaria ambigua ambigua – implications for environmental flow management in the River Murray, Australia. Marine and Freshwater Research, 64, 618–630. doi:10.1071/MF12321
  • Zampatti, B. P., & Leigh, S. J. (2013b). Effects of flooding on recruitment and abundance of golden perch (Macquaria ambigua ambigua) in the lower River Murray. Ecological Management and Restoration, 14, 135–143. doi:10.1111/emr.12050
  • Zampatti, B. P., Leigh, S. J., & Nicol, J. M. (2011). Fish and aquatic macrophyte communities in the Chowilla Anabranch System, South Australia: A report on investigations from 2004–2007 (South Australia Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2010/000719-1. SARDI Research Report Series No. 525) (p. 180).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.