518
Views
3
CrossRef citations to date
0
Altmetric
Articles

Chlorophyll-fluorescence measurements in bryophytes: evidence for three main types of light-curve response

&

References

  • Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 601–39. doi: 10.1146/annurev.arplant.50.1.601
  • Asada, K. 2000. The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society London, B, 355: 1419–31. doi: 10.1098/rstb.2000.0703
  • Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141: 391–96. doi: 10.1104/pp.106.082040
  • Baker, N.R. 2008. Chlorophyll fluorescence: a probe for photosynthesis in vivo. Annual Review of Plant Biology, 59: 89–113. doi: 10.1146/annurev.arplant.59.032607.092759
  • Bates, J.W., Wibbelmann, M.H. & Proctor, M.C.F. 2009. Salinity responses of halophytic and non-halophytic bryophytes determined by chlorophyll fluorometry. Journal of Bryology, 31: 11–9. doi: 10.1179/174328208X380365
  • Demmig-Adams, B. & Adams, W.W. 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist, 172: 11–21. doi: 10.1111/j.1469-8137.2006.01835.x
  • Gerotto, C., Alboresi, A., Giacometti, G.M., Bassi, R. & Morosinotto, T. 2011. Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature. Plant, Cell and Environment, 34: 922–32. doi: 10.1111/j.1365-3040.2011.02294.x
  • Gerotto, C., Alboresi, A., Giacometti, G.M., Bassi, R. & Morosinotto, T. 2012. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. New Phytologist, 196: 763–73. doi: 10.1111/j.1469-8137.2012.04345.x
  • Green, T.G.A., & Proctor, M.C.F. 2016. Physiology of photosynthetic organisms within biological soil crusts: their adaptation, flexibility, and plasticity. In: B. Weber, B. Büdel & J. Belnap, eds. Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Switzerland: Springer International Publishing, pp. 347–81.
  • Heber, U., Bukhov, N.G., Shuvalov, V.A., Kobayashi, Y. & Lange, O.-L. 2001. Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves, and poikilohydric mosses and lichens. Journal of Experimental Botany, 52: 1999–2006. doi: 10.1093/jexbot/52.363.1999
  • Heber, U., Lange, O.-L. & Shuvalov, V.A. 2006. Conservation and dissipation of light energy by plants as complementary processes involved in sustaining plant life: homoiohydric and poikilohydric autotrophs. Journal of Experimental Botany, 57: 1211–23. doi: 10.1093/jxb/erj104
  • Hill, M.O., Blackstock, T.H., Long, D.G. & Rothero, G.P. 2008. A checklist and census catalogue of British and Irish Bryophytes. Cardiff: British Bryological Society.
  • John, E.G. (1998). Simplified curve fitting using spreadsheet add-ins. International Journal of Engineering Education, 14: 375–80.
  • Marschall, M. & Proctor, M.C.F. 2004. Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany, 94: 593–603. doi: 10.1093/aob/mch178
  • Maxwell, K. & Johnson, G.N. 2000. Chlorophyll fluorescence–a practical guide. Journal of Experimental Botany, 51: 659–68. doi: 10.1093/jexbot/51.345.659
  • Niyogi, K.K. 1999. Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 333–59. doi: 10.1146/annurev.arplant.50.1.333
  • Niyogi, K.K. 2000. Safety valves for photosynthesis. Current Opinion in Plant Biology, 3: 455–60. doi: 10.1016/S1369-5266(00)00113-8
  • Niyogi, K.K., Li, X.-P., Rosenberg, V. & Jung, H.-S. 2005. Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany, 56: 375–82. doi: 10.1093/jxb/eri056
  • Nobel, P.S. 1977. Internal leaf area and cellular CO2 resistance: photosynthetic implications of variations with growth conditions and plant species. Physiologia Plantarum, 40: 137–44. doi: 10.1111/j.1399-3054.1977.tb01510.x
  • Paciolla, C. & Tommasi, F. 2003. The ascorbate system in two bryophytes, Brachythecium velutinum and Marchantia polymorpha. Biologia Plantarum, 47: 387–93. doi: 10.1023/B:BIOP.0000023882.24490.51
  • Pannewitz, S., Green, T.G.A., Scheidegger, C., Schlensog, M. & Schroeter, B. 2003. Activity pattern of the moss Hennediella heimii (Hedw.) Zand. in the Dry Valleys, southern Victoria Land, Antarctica, during the mid-austral summer. Polar Biology, 26: 545–551. doi: 10.1007/s00300-003-0518-8
  • Pospišil, P. 2016. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science, 7(Article 1950): 1–12.
  • Proctor, M.C.F. 2005. Why do Polytrichaceae have lamellae? Journal of Bryology, 27: 221–9. doi: 10.1179/174328205X69968
  • Proctor, M.C.F. & Smirnoff, N. 2010. Ecophysiology of photosynthesis in bryophytes: major roles for oxygen photoreduction and non-photochemical quenching at high irradiance in mosses with unistratose leaves? Physiologia Plantarum, 141: 130–40. doi: 10.1111/j.1399-3054.2010.01424.x
  • Proctor, M.C.F. & Smirnoff, N. 2015. Photoprotection in bryophytes: rate and extent of dark-relaxation of non-photochemical quenching (NPQ) of chlorophyll fluorescence. Journal of Bryology, 37: 171–7. doi: 10.1179/1743282015Y.0000000001
  • Schroeter, B., Green, T.G.A., Kulle, D., Pannewitz, S., Schlensog, M. & Sancho, L.G. 2012. The moss Bryum argenteum var. muticum Brid. is well adapted to cope with high light in continental Antarctica. Antarctic Science, 24: 281–91. doi: 10.1017/S095410201200003X
  • Smirnoff, N. & Wheeler, G.L. 2000. Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences, 19: 267–90. doi: 10.1080/07352680091139231
  • Tobias, M. & Niinemets, Ü. 2010. Acclimation of photosynthetic characteristics of the moss Pleurozium schreberi to among-habitat and within-canopy light gradients. Plant Biology, 12: 743–54. doi: 10.1111/j.1438-8677.2009.00285.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.