276
Views
2
CrossRef citations to date
0
Altmetric
Articles

Automatic Load Frequency Control of Six Areas’ Hybrid Multi-Generation Power Systems Using Neuro-Fuzzy Intelligent Controller

&

REFERENCES

  • D. P. Kothari and Nagrath , Modern Power System Analysis , 3rd ed. New Delhi : Tata McGraw Hill, 2003.
  • P. Kundur , Power System Stability and Control . New York : McGraw Hill, 1994.
  • C. L. Wadhawa , Electric Power System . New Delhi : New Age International Publication, 2007.
  • O. I. Elgerd , Electric Energy System Theory: An Introduction . New York : McGraw Hill, 1971.
  • G. Gross and J. W. Lee , “Analysis of load frequency control performance assessment criteria,” IEEE Trans. Power Syst. , Vol. 16, no. 3, pp. 520–25, 2001.
  • J. Talaq and F. Al- Basri , “Adaptive fuzzy gain scheduling for load frequency control,” IEEE Trans. Power Syst. , Vol. 14. no. 1, pp. 145–50, 1999.
  • P. Aravindan and M. Y. Sanavullah , “Fuzzy logic based automatic load frequency control of two area power system with GRC,” Int. J. Comput. Intell. Res. , Vol. 5, no. 1, pp. 37–44, 2009.
  • D. Petkovic , Z. Cojbasic , and V. Nikolic , “Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation,” Renew. Sustain. Energy Rev. , Vol. 28, pp. 191–5, 2013.
  • D. Petkovic , Z. Cojbasic , V. Nikolic , S. Shamshirband , M. L. M. Kiah , N. Badrul Anuar , and A. W. A. Wahab , “Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission,” Energy , Vol. 64, pp. 868–74, 2014.
  • S. Shamshirband , D. Petkovic , H. Saboohi , N. B. Anuar , I. Inayat , S. Akib , Z. Cojbasic , V. Nikolic , L. M. Kiah , and A. Gani , “Wind turbine power coefficient estimation by soft computing methodologies: Comparative study,” Energy Convers. Manage. , Vol. 81, pp. 520–6, Apr. 2014.
  • D. Petkovic , S. Shamshirband , N. B. Anuar , H. Saboohi , A. W. A. Wahab , M. Protic , E. Zalnezhad , and S. M. A. Mirhashemi , “An appraisal of wind speed distribution prediction by soft computing methodologies: A comparative study,” Energy Convers. Manage. , Vol. 84, pp. 133–9, Aug. 2014.
  • D. Petkovic , S. Shamshirband , Z. Cojbasic , V. Nikolic , N. B. Anuar , A. Q. M. Sabri , and S. Akib , “Adaptive neuro-fuzzy estimation of building augmentation of wind turbine power,” Comput. Fluids , Vol. 97, pp. 188–94, Jun. 2014.
  • D. Petkovic , S. Shamshirband , N. B. Anuar , S. Naji , L. M. Kiah , and A. Gani , “Adaptive neuro-fuzzy evaluation of wind farm power production as function of wind speed and direction,” Stoch. Environ. Res. Risk. Assess. , Vol. 29, no. 3, pp. 793–802, Mar. 2015. doi:10.1007/s00477-014-0901-8.
  • S. Shamshirband , D. Petkovic , R. Hashim , and H. Motamedi , “Adaptive neuro-fuzzy methodology for noise assessment of wind turbine,” PLoS One , Vol. 9, no. 7, pp. 1–9, Jul. 2014.
  • D. Petkovic and S. Shamshirband , “Soft methodology selection of wind turbine parameters to large affect wind energy conversion,” Int. J. Electr. Power Energy Syst. , Vol. 69, pp. 98–103, Nov. 2015. doi:10.1016/j.ijepes.2014.12.086.
  • D. Petkovic , S. Shamshirband , C. W. Tong , and E. T. Al-Shammari , “Generalized adaptive neuro-fuzzy based method for wind speed distribution prediction,” Flow Measur. Instrum. , Vol. 43, pp. 47–52, Jun. 2015. doi:10.1016/j.flowmeasinst.2015.03.003.
  • S. Shamshirband , D. Petkovic , Z. Cojbasic , V. Nikolic , N. B. Anuar , N. L. M. Shuib , L. M. Kiah , and S. Akib , “Adaptive neuro-fuzzy optimization of wind farm project net profit,” Energy Convers. Manage. , Vol. 80, pp. 229–37, Apr. 2014.
  • D. Petkovic , S. A. Hamid , Z. Cojbasic , and N. pavlovic , “Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect,” Nat. Hazards , Vol. 74, no. 2, pp. 463–75, Nov. 2014. doi:10.1007/s11069-014-1189-1.
  • S. Shamshirband , D. Petkovic , N. B. Anuar , and A. Gani , “Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models,” Renew. Sustain. Energy Rev. , Vol. 36, pp. 270–6, Aug. 2014.
  • S. Shamshirband , D. Petkovic , R. Hashim , S. Motamedi , and N. B. Anuar , “An appraisal of wind turbine wake models by adaptive neuro-fuzzy methodology,” Int. J. Electr. Power Energy Syst. , Vol. 63, pp. 618–24, Dec. 2014.
  • V. Nikoli , S. Shamshirband , D. Petkovic , K. Mohammadi , Z. Cojbasic , T. A. Altameem , and A. Gani , “Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology,” Energy , Vol. 80, pp. 361–72, Feb. 2015. doi:10.1016/j.energy.2014.11.078.
  • D. Petkovic , V. Nikolic , V. V. Mitic , and L. Kocic , “Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorithms,” Flow Measur. Instrum. , Vol. 54, pp. 172–6, Apr. 2017. doi:10.1016/j.flowmeasinst.2017.01.007.
  • V. Nikolic , V. V. Mitic , L. Kocic , and D. Petkovic , “Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique,” Knowl. Info. Syst . Vol. 52, pp. 255–265, Nov. 2016. doi:10.1007/s10115-016-1006-0.
  • V. Nikolic , S. Sajjadi , D. Petkovic , and Z. Cojbasic , “Design and state of art of innovative wind turbine systems,” Renew. Sustain. Energy Rev. , Vol. 61, pp. 258–65, Aug. 2016. doi:10.1016/j.rser.2016.03.052.
  • D. Petkovic , N. D. Pavlovi , and Z. Cojbasic , “Wind farm efficiency by adaptive neuro-fuzzy strategy,” Int. J. Electr. Power Energy Syst. , Vol. 81, pp. 215–21, Oct 2016. doi:10.1016/j.ijepes.2016.02.020.
  • J. Nanda and J. S. Kakkarum , “Automatic generation control with fuzzy logic controllers considering generation constraints,” in Proceeding of 6th International Conference on Advances in Power System Control Operation and Managements , Hong Kong , Nov. 2003.
  • A. Demiroren , H. L. Zeynelgil and N. S. Sengor , “The application of ANN Technique to Load-frequency Control For Three-area Power System,” in IEEE Power Tech Conference , Porto, Portugal , 10–13 Sep. 2001.
  • S. Prakash and S. K. Sinha , “Impact of slider gain on load frequency control using fuzzy logic controller,” ARPN J. Eng. Appl. Sci. , Vol. 4, no. 7, pp. 20–7, 2009.
  • J. Y. Hung , “Variable structure control: A survey,” IEEE Trans. Ind. Electron. , Vol. 40, no. 1, pp. 4–22, 1993.
  • A. Kumar , O. P. Malik , and G. S. Hope , “Variable-structure-system control applied to AGC of an interconnected power system,” IEEE 1EE Proc. , Vol. 132, no. 1, 1985.
  • Q. P. Ha , “A fuzzy sliding mode controller for power system load frequency control,” in Second International Conference of Knowledge based Intelligent Electronic System , Adelaide, Australia , 21–23 Apr. 1998.
  • M. Masiala , M. Ghnbi , and A. Kaddouri , “An adaptive fuzzy controller gain scheduling for power system load-frequency control,” in IEEE International Conference on Industrial Technology (ICIT) , Hammanet, Tunisia, 2004.
  • H. Shayeghi , H. A. Shayanfar , and A. Jalili , “Load frequency control strategies: A state-of-the- art survey for the researcher,” Energy Convers. Manage. , Vol. 50, pp. 344–53, 2009.
  • Par. Ibraheem and D. P. Kothari , “Recent philosophies of automatic generation control strategies in power systems,” IEEE Trans. Power Syst. , Vol. 20, no. 1, pp. 346–57, 2005.
  • P. Ram and A. N. Jha , “Automatic generation control of interconnected hydro-thermal system in deregulated environment considering generation rate constraints,” in International Conference on Industrial Electronics Control and Robotics , Orissa, India, 2010, pp. 148–58.
  • K. P. Singh Parmar , S. Majhi , and D. P. Kothari , “Load frequency control of a realistic power system with multi-source power generation,” Int. J. Electr. Power Energy Syst. , Vol. 42, pp. 426–33, 2012.
  • O. I. Emre , I. H. Altas , and A. M. Sharaf , “Load frequency control in four area power systems using fuzzy logic PI controller,” in 16th National Power Systems Conference, Department of Electrical Engineering, Univ. College of Engg., Osmania University, Hyderabad , 15–17 Dec. 2010, pp. 233–6.
  • B. Anand and Aer. Jeyakumar , “Load frequency control with Fuzzy logic controller considering non linearities and boiler dynamics,” ICGST-ACSE J. , Vol. 8, no. 111, pp. 15–20, 2009.
  • S. Hykin , Neural Network . New York : Mac Miller, 1994.
  • J. N. Mines , MATLAB Supplement to Fuzzy & Neural Approach in Engineering . New York : John Wiley, 1997.
  • T. J. Ross , Fuzzy Logic with Engineering Application . New Delhi : McGraw Hill, 1995.
  • S. Shamshirband , J. Iqbal , D. Petkovic , and M. A. Mirhashemi , “Survey of four models of probability density functions of wind speed and directions by adaptive neuro-fuzzy methodology,” Adv. Eng. Software , Vol. 76, pp. 148–53, Oct. 2014.
  • S. Shamshirband , D. Petkovic , C. W. Tong , and E. T. Al-Shammari , “Trend detection of wind speed probability distribution by adaptive neuro-fuzzy methodology,” Flow Measur. Instrum. , Vol. 45, pp. 43–8, Oct. 2015. doi:10.1016/j.flowmeasinst.2015.04.007.
  • V. Nikolic , S. Motamedi , S. Shamshirband , D. Petkovic , Ch. Sudheer , and M. Arif , “Extreme learning machine approach for sensor less wind speed estimation,” Mechatronics . In press. doi:10.1016/j.mechatronics.2015.04.007.
  • D. Petkovic , ‘Adaptive neuro-fuzzy approach for estimation of wind speed distribution’, Int. J. Electr. Power Energy Syst. , Vol. 73, pp. 389–92, Dec. 2015. doi:10.1016/j.ijepes.2015.05.039.
  • K. Mohammadi , S. Shamshirband , P. L. Yee , D. Petkovi , M. Zamani , and Ch. Sudheer , “Predicting the wind power density based upon extreme learning machine,” Energy , Vol. 86, pp. 232–39, Jun. 2015. doi:10.1016/j.energy.2015.03.111.
  • V. Nikolic , D. Petkovic , L. Y. Por , S. Shamshirband , M. Zamani , Z. Cojbasic , and S. Motamedi , “Potential of neuro-fuzzy methodology to estimate noise level of wind turbines,” Mech. Syst. Signal Proc. , Vol. 66–78, pp. 715–22, Jan. 2016. doi:10.1016/j.ymssp.2015.03.013.
  • V. Nikolic , D. Petkovic , S. Shamshirband , and Z. Cojbasic , ‘Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance’, Energy , Vol. 89, pp. 324–33, Oct. 2015. doi:10.1016/j.energy.2015.05.126.
  • K. R. Sudha and R. Vijaya Santhi , “Robust decentralized load frequency control of interconnected power system with generation rate constraint using Type-2 fuzzy approach,” Int. J. Electr. Power Energy Syst. , Vol. 33, pp. 699–707, 2011.
  • S. Prakash and S. K. Sinha , “Intelligent PI control technique in four area load frequency control of interconnected hydro-thermal power system,” in IEEE International Conference on Computing, Electronics and Electrical Technologies , Kumaracoil, India, 2012.
  • G. Panda , S. Panda , and C. Ardil , “Automatic generation control of interconnected power system with generation rate constraints by hybrid neuro fuzzy approach,” World Acad. Sci. Eng. Technol. , Vol. 52, pp. 543–8, 2009.
  • H. Shayeghi and H. A. Shayanfar , “Power system load frequency control using RBF neural network based on µ-synthesis theory,” in Proceeding of IEEE Conference on Cybernetics and Intelligent System , Singapore , 1–3 Dec. 2004, pp. 93–8.
  • S. R. Khuntia and S. Panda , “Simulation study for automatic generation control of a multi-area power system by ANFIS approach,” Appl. Soft Comput. , Vol. 12, pp. 333–41, 2012.
  • J. R. Jang , ‘ANFIS: Adaptive-network-based fuzzy inference system’, IEEE Trans. Syst. Man Cybern. , Vol. 23, no. 3, pp. 665–85, May 1993.
  • S. Prakash and S. K. Sinha , “Neuro fuzzy hybrid intelligent approach for four-area load frequency control of interconnected power system,” in IEEE 2nd International Conference on Power, Control and Embedded Systems , Allahabad, India, 2012.
  • S. Prakash and S. K. Sinha , “Simulation based neuro-fuzzy hybrid intelligent PI control approach in four-area load frequency control of interconnected power system,” Appl. Soft Comput. , Vol. 23, pp. 152–64, 2014.
  • S. P. Giri and S. K. Sinha , “Four-area load frequency control of an interconnected power system using neuro-fuzzy hybrid intelligent proportional and integral control approach,” J. Intell. Syst. , Vol. 22, no. 2, pp. 131–153, Jun. 2013. doi:10.1515/jisys-2012-0025.
  • I. Nasiruddin , T. S. Bhatti , and N. Hakimuddin , “Automatic generation control in an interconnected power system incorporating diverse source power plants using bacteria foraging optimization technique,” Electr. Power Components Syst. , Vol. 43, no. 2, pp. 189–99, 2015.
  • N. Hasan , Ibraheem , and S. Farooq , “Real time simulation of automatic generation control for interconnected power system,” Int. J. Electr. Eng. Info. , Vol. 4, no. 1, Mar. 2012.
  • K. P. Singh Parmar , S. Majhi , and D. P. Kothari , “Optimal load frequency control of an interconnected power system,” MIT Int. J. Electr. Instrum. Eng. , Vol. 1, no. 1, pp. 1–5, Jan. 2011.
  • S. Prakash and S. K. Sinha , “Neuro-fuzzy computational technique to control load frequency in hydro-thermal interconnected power system,” J. Inst. Eng. India Ser. B , Vol. 96, no. 3, pp. 273–82, Sep. 2015.
  • S. Prakash and S. K. Sinha , “Load frequency control of multi area power systems using neuro-fuzzy hybrid intelligent controller,” IETE J. Res. , Vol. 61, no. 5, pp. 526–32, 2015.
  • A. Magla and J. Nanda , “Automatic generation control of an interconnected hydro-thermal system using conventional integral and fuzzy logic control,” in International Conference on IEEE Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, China, Apr. 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.