242
Views
7
CrossRef citations to date
0
Altmetric
Review Article

A Review on Optimization of Fuzzy Controller Parameters in Robotic Applications

, &

References

  • L. A. Zadeh, “Fuzzy sets,” Inf. Control, Vol. 8, pp. 338–53, 1965. doi:10.1016/S0019-9958(65)90241-X
  • S. Bhattacharyya, D. Basu, A. Konar, and D. N. Tibarewala, “Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG based movement control of a robot arm,” Rob. Auton. Syst., Vol. 68, pp. 104–15, 2015. doi:10.1016/j.robot.2015.01.007
  • B. Zhu, and Z. Xu, “A fuzzy linear programming method for group decision making with additive reciprocal fuzzy preference relations,” Fuzzy Sets Syst., Vol. 246, pp. 19–33, 2014. doi:10.1016/j.fss.2014.01.001
  • W. Pedrycz, R. Al-Hmouz, A. Morfeq, and A. S. Balamash, “Building granular fuzzy decision support systems,” Knowledge-Based Syst., Vol. 58, pp. 3–10, 2014. doi:10.1016/j.knosys.2013.07.022
  • G. E. Martínez, P. Melin, and O. Castillo, “A new approach for an intuitionistic fuzzy Sugeno integral for decision makingVol. 25, no. 2, pp. 41–52, 2019. doi:10.7546/nifs.2019.25.2.41-52.
  • E. Aghajari, and G. D. Chandrashekhar, “Self-organizing map based extended fuzzy C-means (SEEFC) algorithm for image segmentation,” Appl. Soft Comput., Vol. 54, pp. 347–63, 2017. doi:10.1016/j.asoc.2017.01.003
  • D. Sánchez, P. Melin, and O. Castillo, “Comparison of particle swarm optimization variants with fuzzy dynamic parameter adaptation for modular granular neural networks for human recognition,” J. Intell. Fuzzy Syst., Vol. 38, pp. 3229–52, 2020. doi:10.3233/JIFS-191198
  • E. Ontiveros-Robles, P. Melin, O. Castillo, and J. Gonzalez, “Design and FPGA implementation of real-time edge detectors based on interval type-2 fuzzy systems,” J. Mult. Log. Soft Comput., Vol. 33, pp. 295–320, 2019.
  • C. I. Gonzalez, P. Melin, J. R. Castro, and O. Castillo, “Edge detection approach based on type-2 fuzzy Images,” J. Mult. Log. Soft Comput., Vol. 33, pp. 431–58, 2019.
  • A. C. Tolga, I. B. Parlak, and O. Castillo, “Finite-interval-valued type-2 Gaussian fuzzy numbers applied to fuzzy TODIM in a healthcare problem,” Eng. Appl. Artif. Intell., Vol. 87, pp. 103352, 2020. doi:10.1016/j.engappai.2019.103352
  • E. Ontiveros, P. Melin, and O. Castillo, “Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis,” Inf. Sci. (Ny)., Vol. 525, pp. 37–53, 2020. doi: 10.1016/j.ins.2020.03.059
  • O. Castillo, and P. Melin. Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine. Cham: Springer, 2019.
  • L. Cervantes, and O. Castillo, “Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control,” Inf. Sci. (Ny)., Vol. 324, pp. 247–56, 2015. doi:10.1016/j.ins.2015.06.047
  • O. Castillo, L. Cervantes, J. Soria, M. Sanchez, and J. R. Castro, “A generalized type-2 fuzzy granular approach with applications to aerospace,” Inf. Sci. (Ny)., Vol. 354, pp. 165–77, 2016. doi:10.1016/j.ins.2016.03.001
  • J. R. Castro, M. A. Sanchez, C. I. Gonzalez, P. Melin, and O. Castillo, “A new method for parameterization of general type-2 fuzzy Sets,” Fuzzy Inf. Eng., Vol. 10, no. 1, pp. 31–57, 2018. doi:10.1080/16168658.2018.1509519
  • M. Zangeneh, E. Aghajari, and M. Forouzanfar, “A survey: fuzzify parameters and membership function in electrical applications,” Int. J. Dyn. Control, 1–12, 2020. doi:10.1007/s40435-020-00622-1
  • M. Zangeneh, E. Aghajari, and M. Forouzanfar, “Fuzzy membership function selection in electrical systems: a review,” J. Nov. Res. Electr. Power, Vol. 8, no. 3, pp. 13–25, 2019.
  • I. Filip, and I. Szeidert, “PT US CR,” Expert Syst. Appl., 2016. doi:10.1016/j.eswa.2016.01.036.
  • J. Zhao, and B. K. Bose. Evaluation of membership functions for fuzzy logic controlled induction motor drive,” IEEE 2002 28th Annu. Conf. Ind. Electron. Soc., 2002, pp. 229–234. doi:10.1109/IECON.2002.1187512.
  • B. Hamed. “Membership functions and approximate reasoning.” https://slideplayer.com/slide/4840082/.
  • V. O. S. Olunloyo, “On development of fuzzy controller: the case of Gaussian and triangular membership functions,” J. Signal Inf. Process., Vol. 02, no. November, pp. 257–65, 2011. doi:10.4236/jsip.2011.24036.
  • “” http://motodrive.ir/.
  • S. Ganguly, T. Mahto, and V. Mukherjee, “Integrated frequency and power control of an isolated hybrid power system considering scaling factor based fuzzy classical controller,” Swarm Evol. Comput., 1–18, 2016. doi:10.1016/j.swevo.2016.08.001.
  • R. Sarrias-mena, L. M. Fernández-ramírez, C. A. García-vázquez, and F. Jurado, “Fuzzy logic based power management strategy of a multi-MW doubly- fed induction generator wind turbine with battery and ultracapacitor,” Energy, 1–16, 2014. doi:10.1016/j.energy.2014.04.049.
  • O. Castillo, et al., “A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics,” Eng. Appl. Artif. Intell., Vol. 85, no. March, pp. 666–80, 2019. doi:10.1016/j.engappai.2019.07.020.
  • V. Muthiah-Nakarajan, and M. M. Noel, “Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion,” Appl. Soft Comput. J., Vol. 38, pp. 771–87, 2016. doi:10.1016/j.asoc.2015.10.034.
  • E. Bernal, O. Castillo, J. Soria, and F. Valdez, “Fuzzy galactic swarm optimization with dynamic adjustment of parameters based on fuzzy logic,” SN Comput. Sci., Vol. 1, no. 1, 2020. doi:10.1007/s42979-020-0062-4.
  • D. Pan, F. Gao, Y. Miao, and R. Cao, “Advances in engineering software co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID / PID algorithms,” Adv. Eng. Softw., Vol. 79, pp. 36–46, 2015. doi:10.1016/j.advengsoft.2014.09.005.
  • R. Sharma, P. Gaur, and A. P. Mittal, “Design of two-layered fractional order fuzzy logic controllers applied to robotic manipulator with variable payload,” Appl. Soft Comput. J., 2016. doi:10.1016/j.asoc.2016.05.043.
  • S. Alireza, M. Rafeeyan, E. Zakeri, and A. Zare, “Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on / off solenoid valves based on the PWM wave,” ISA Trans., 1–22, 2016. doi:10.1016/j.isatra.2015.12.005.
  • A. A. Fahmy, and A. M. A. Ghany, “Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications,” Ain Shams Eng. J., Vol. 4, no. 4, pp. 805–829, 2013. doi:10.1016/j.asej.2013.02.010.
  • M. Guerrero, O. Castillo, and M. Garcia. Fuzzy dynamic parameters adaptation in the Cuckoo Search Algorithm using Fuzzy logic,” 2015 IEEE Congr. Evol. Comput. CEC 2015 - Proc., 2015, pp. 441–8. doi:10.1109/CEC.2015.7256923.
  • F. Olivas, F. Valdez, and O. Castillo, “Comparison of bio-inspired methods with parameter adaptation through interval type-2 fuzzy logic,” Stud. Comput. Intell., Vol. 749, pp. 39–53, 2018. doi:10.1007/978-3-319-71008-2_4.
  • L. Amador-Angulo, and O. Castillo. “Comparative study of metrics that affect in the performance of the bee colony optimization algorithm through interval type-2 fuzzy logic systems,” in North American Fuzzy Information Processing Society Annual Conference, 2017, pp. 61–72.
  • P. Ochoa, O. Castillo, and J. Soria. “A new approach for dynamic mutation parameter in the differential evolution algorithm using fuzzy logic,” in North American Fuzzy Information Processing Society Annual Conference, 2017, pp. 85–93.
  • J. Perez, F. Valdez, O. Castillo, P. Melin, C. Gonzalez, and G. Martinez, “Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm,” Soft Comput., Vol. 21, no. 3, pp. 667–85, 2017. doi:10.1007/s00500-016-2469-3.
  • J. Pérez, F. Valdez, and O. Castillo, “Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation,” in Nature-Inspired Design of Hybrid Intelligent Systems, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2017, pp. 343–55.
  • J. Pérez, F. Valdez, and O. Castillo. “A new bat algorithm augmentation using fuzzy logic for dynamical parameter adaptation,” in Mexican International Conference on Artificial Intelligence, 2015, pp. 433–42.
  • L. Rodríguez, O. Castillo, M. García, and J. Soria, “A comparative study of dynamic adaptation of parameters in the GWO algorithm using type-1 and interval type-2 fuzzy logic,” Stud. Comput. Intell., Vol. 749, pp. 3–16, 2018. doi:10.1007/978-3-319-71008-2_1.
  • L. Rodríguez, et al., “A fuzzy hierarchical operator in the grey wolf optimizer algorithm,” Appl. Soft Comput. J., Vol. 57, pp. 315–28, 2017. doi:10.1016/j.asoc.2017.03.048.
  • L. Rodríguez, O. Castillo, and J. Soria, “A study of parameters of the grey wolf optimizer algorithm for dynamic adaptation with fuzzy logic,” in Nature-Inspired Design of Hybrid Intelligent Systems, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2017, pp. 371–90.
  • L. Rodríguez, O. Castillo, and J. Soria. “A study of parameter dynamic adaptation with fuzzy logic for the grey wolf optimizer algorithm,” in Mexican International Conference on Artificial Intelligence, 2016, pp. 228–38.
  • F. Olivas, F. Valdez, and O. Castillo. “Dynamic parameter adaptation in ant colony optimization using a fuzzy system for TSP problems,” no. October 2018, 2015, doi:10.2991/ifsa-eusflat-15.2015.108.
  • F. Olivas, F. Valdez, and O. Castillo. “A fuzzy system for parameter adaptation in ant colony optimization,” IEEE SSCI 2014 - 2014 IEEE Symp. Ser. Comput. Intell. - SIS 2014 2014 IEEE Symp. Swarm Intell. Proc., pp. 84–90, 2015, doi:10.1109/SIS.2014.7011780.
  • F. Olivas, F. Valdez, O. Castillo, C. I. Gonzalez, G. Martinez, and P. Melin, “Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems,” Appl. Soft Comput. J., Vol. 53, pp. 74–87, 2017. doi:10.1016/j.asoc.2016.12.015.
  • F. Olivas, F. Valdez, and O. Castillo, “Ant colony optimization with parameter adaptation using fuzzy logic for tsp problems,” in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks And Nature-Inspired Optimization, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2015, pp. 593–603.
  • E. Bernal, O. Castillo, J. Soria, and F. Valdez. “Interval Type-2 fuzzy logic for dynamic parameter adjustment in the imperialist competitive algorithm,” in 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2019, pp. 1–5.
  • E. Bernal, O. Castillo, and J. Soria. “Fuzzy logic for dynamic adaptation in the imperialist competitive algorithm,” Annu. Conf. North Am. Fuzzy Inf. Process. Soc. - NAFIPS, vol. 0, no. 2, 2016, pp. 0–5. doi:10.1109/NAFIPS.2016.7851599.
  • E. Bernal, O. Castillo, J. Soria, and F. Valdez, “Type-2 fuzzy logic for dynamic parameter adaptation in the imperialist competitive algorithm,” Stud. Comput. Intell., Vol. 827, pp. 109–18, 2020. doi:10.1007/978-3-030-34135-0_9.
  • E. Méndez, O. Castillo, J. Soria, P. Melin, and A. Sadollah. “Water cycle algorithm with fuzzy logic for dynamic adaptation of parameters,” in Mexican International Conference on Artificial Intelligence, 2016, pp. 250–60.
  • E. Méndez, O. Castillo, J. Soria, and A. Sadollah, “Fuzzy dynamic adaptation of parameters in the water cycle algorithm,” in Nature-Inspired Design of Hybrid Intelligent Systems, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2017, pp. 297–311.
  • O. Castillo, E. Ramirez, and O. Roeva, “Water cycle algorithm augmentation with fuzzy and intuitionistic fuzzy dynamic adaptation of parameters,” Notes on Intuitionistic Fuzzy Sets, Vol. 23, no. 1, pp. 79–94, 2017.
  • C. Caraveo, F. Valdez, and O. Castillo, “Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation,” Appl. Soft Comput. J., Vol. 43, pp. 131–42, 2016. doi:10.1016/j.asoc.2016.02.033.
  • L. Amador-Angulo and O. Castillo, “Comparative analysis of designing differents types of membership functions using bee colony optimization in the stabilization of fuzzy controllers,” in Nature-Inspired Design of Hybrid Intelligent Systems, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2017, pp. 551–71.
  • L. Amador-Angulo, and O. Castillo, “A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers,” Soft Comput., Vol. 22, no. 2, pp. 571–94, 2018. doi:10.1007/s00500-016-2354-0.
  • O. Castillo, and L. Amador-Angulo, “A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design,” Inf. Sci. (Ny)., Vol. 460–461, pp. 476–96, 2018. doi:10.1016/j.ins.2017.10.032.
  • F. Olivas, L. Amador-Angulo, J. Perez, C. Caraveo, F. Valdez, and O. Castillo, “Comparative study of type-2 fuzzy Particle swarm, Bee colony and Bat algorithms in optimization of fuzzy controllers,” Algorithms, Vol. 10, no. 3, 2017. doi:10.3390/a10030101.
  • O. Castillo, F. Valdez, J. Soria, L. Amador-Angulo, P. Ochoa, and C. Peraza, “Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms,” Algorithms, Vol. 12, no. 1, 2019. doi:10.3390/a12010009.
  • P. Ochoa, O. Castillo, and J. Soria, “Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers,” in Recent Advances on Hybrid Approaches for Designing Intelligent Systems, Oscar Castillo and Patricia Melin, Ed. Cham: Springer, 2014, pp. 275–288.
  • P. Ochoa, O. Castillo, and J. Soria. “Type-2 fuzzy logic dynamic parameter adaptation in a.”.
  • P. Ochoa, O. Castillo, and J. Soria, “Optimization of fuzzy controller design using a differential evolution algorithm with dynamic parameter adaptation based on type-1 and interval type-2 fuzzy systems,” Soft Comput., Vol. 24, no. 1, pp. 193–214, 2020. doi:10.1007/s00500-019-04156-3.
  • F. Gaxiola, P. Melin, F. Valdez, J. R. Castro, and O. Castillo, “Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO,” Appl. Soft Comput. J., Vol. 38, pp. 860–71, 2016. doi:10.1016/j.asoc.2015.10.027.
  • R. Martínez-Soto, O. Castillo, L. T. Aguilar, and A. Rodriguez, “A hybrid optimization method with PSO and GA to automatically design type-1 and type-2 fuzzy logic controllers,” Int. J. Mach. Learn. Cybern., Vol. 6, no. 2, pp. 175–96, 2015. doi:10.1007/s13042-013-0170-8.
  • E. Rubio and O. Castillo, “Interval type-2 fuzzy possibilistic c-means optimization using particle swarm optimization,” in Nature-Inspired Design of Hybrid Intelligent Systems, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2017, pp. 63–78.
  • H. Neyoy, O. Castillo, and J. Soria, “Fuzzy logic for dynamic parameter tuning in ACO and its application in optimal fuzzy logic controller design,” doi:10.1007/978-3-319-10960-2.
  • M. L. Lagunes, O. Castillo, and J. Soria. “Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm,” in North American Fuzzy Information Processing Society Annual Conference, 2017, pp. 131–7.
  • E. Bernal, O. Castillo, J. Soria, and F. Valdez, “Optimization of fuzzy controller using galactic swarm optimization with type-2 fuzzy dynamic parameter adjustment,” Axioms, Vol. 8, no. 1, 2019. doi:10.3390/axioms8010026.
  • M. L. Lagunes, O. Castillo, F. Valdez, and J. Soria, “Multi-metaheuristic competitive model for optimization of fuzzy controllers,” Algorithms, Vol. 12, no. 5, 2019. doi:10.3390/a12050090.
  • M. Begnini, D. Wildgrube, and N. Almeida, “Control engineering practice a robust adaptive fuzzy variable structure tracking control for the wheeled mobile robot : simulation and experimental results,” Control Eng. Pract., Vol. 64, no. January, pp. 27–43, 2017. doi:10.1016/j.conengprac.2017.04.006.
  • R. Sharma, K. P. S. Rana, and V. Kumar, “Expert systems with applications performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator,” Expert Syst. Appl., Vol. 41, no. 9, pp. 4274–89, 2014. doi:10.1016/j.eswa.2013.12.030.
  • K. Abd, K. Abhary, and R. Marian, “Multi-objective optimisation of dynamic scheduling in robotic flexible assembly cells via fuzzy-based Taguchi Approach * Khalid Abd Kazem Abhary,” Comput. Ind. Eng., 2016. doi:10.1016/j.cie.2016.07.028.
  • R. Samant, S. Nair, and F. Kazi, “Sciencedirect autonomous development autonomous development autonomous development humanoid control competitive control competitive control competitive robot control competitive,” IFAC-PapersOnLine, Vol. 49, no. 1, pp. 373–8, 2016. doi:10.1016/j.ifacol.2016.03.082.
  • S. R. Naghibi, A. A. Pirmohamadi, and S. A. A. Moosavian, “Robotics and computer – integrated manufacturing fuzzy MTEJ controller with integrator for control of underactuated manipulators,” Robot. Comput. Integr. Manuf., Vol. 48, no. March, pp. 93–101, 2017. doi:10.1016/j.rcim.2017.03.006.
  • B. Bhusan, B. Kumar, and R. Saha, “Robotics and computer-integrated manufacturing realtime performance analysis of different combinations of fuzzy – PID and bias controllers for a two degree of freedom electrohydraulic parallel manipulator,” Robot. Comput. Integr. Manuf., 1–8, 2014. doi:10.1016/j.rcim.2014.11.001.
  • L. Amador-Angulo, O. Castillo, and J. R. Castro. “A generalized type-2 fuzzy logic system for the dynamic adaptation the parameters in a bee colony optimization algorithm applied in an autonomous mobile robot control,” 2016 IEEE Int. Conf. Fuzzy Syst. FUZZ-IEEE 2016, 2016, pp. 537–44. doi: 10.1109/FUZZ-IEEE.2016.7737733.
  • L. Amador-Angulo, and O. Castillo. “A fuzzy bee colony optimization algorithm using an interval type-2 fuzzy logic system for trajectory control of a mobile robot,” in Mexican International Conference on Artificial Intelligence, 2015, pp. 460–71.
  • L. Amador-Angulo, O. Mendoza, J. R. Castro, A. Rodríguez-Díaz, P. Melin, and O. Castillo, “Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot,” Sensors (Switzerland), Vol. 16, no. 9, 2016. doi:10.3390/s16091458.
  • M. L. Lagunes, O. Castillo, and J. Soria, “Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the firefly algorithm,” in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, Oscar Castillo, Patricia Melin, and Janusz Kacprzyk, Eds. Cham: Springer, 2018, pp. 199–206.
  • M. L. Lagunes, O. Castillo, F. Valdez, J. Soria, and P. Melin. “Parameter optimization for membership functions of type-2 fuzzy controllers for autonomous mobile robots using the firefly algorithm,” in North American Fuzzy Information Processing Society Annual Conference, 2018, pp. 569–79.
  • M. L. Lagunes, O. Castillo, J. Soria, M. Garcia, and F. Valdez, “Optimization of granulation for fuzzy controllers of autonomous mobile robots using the firefly algorithm,” Granul. Comput., Vol. 4, no. 2, pp. 185–95, 2019. doi:10.1007/s41066-018-0121-6.
  • L. Astudillo, P. Melin, and O. Castillo, “A new optimization method based on a paradigm inspired by nature,” in Soft Computing for Recognition Based on Biometrics, Patricia Melin, Janusz Kacprzyk, and Witold Pedrycz, Eds. Berlin: Springer, 2010, pp. 277–83.
  • A. Y. S. Lam, and V. O. K. Li, “Chemical reaction optimization: a tutorial,” Memetic Comput., Vol. 4, no. 1, pp. 3–17, 2012. doi:10.1007/s12293-012-0075-1.
  • O. Castillo and J. Soria, “Optimization of reactive control for mobile robots based on the CRA using type-2 fuzzy logic,” in Nature-Inspired Design Of Hybrid Intelligent Systems, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2017, pp. 505–15.
  • D. de la O, O. Castillo, and J. Soria, “Chemical reaction algorithm for type-2 fuzzy control optimization in mobile robots,” J. Autom. Mob. Robot. Intell. Syst., Vol. 12, pp. 10–19, 2018.
  • O. Castillo, A. Meléndez, P. Melin, L. Astudillo, and C. Sánchez, “Optimization of reactive fuzzy controllers for mobile robots based on the chemical Reactions algorithm,” in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, Patricia Melin, Oscar Castillo, and Janusz Kacprzyk, Eds. Cham: Springer, 2015, pp. 253–66.
  • O. Castillo, H. Neyoy, J. Soria, P. Melin, and F. Valdez, “A new approach for dynamic fuzzy logic parameter tuning in Ant colony optimization and its application in fuzzy control of a mobile robot,” Appl. Soft Comput. J., Vol. 28, pp. 150–9, 2015. doi:10.1016/j.asoc.2014.12.002.
  • O. Castillo, “Bio-inspired optimization of type-2 fuzzy controllers in autonomous mobile robot Navigation,” in Advanced control techniques in complex engineering systems: theory and applications, Yuriy P. Kondratenko, Arkadii A. Chikrii, Vyacheslav F. Gubarev, and Janusz Kacprzyk, Eds. Cham: Springer, 2019, pp. 187–200.
  • E. Hernandez, O. Castillo, and J. Soria. “Design of optimal fuzzy controllers for autonomous mobile robots using the grey wolf algorithm,” in International Fuzzy Systems Association World Congress, 2019, pp. 285–95.
  • E. Hernández, O. Castillo, and J. Soria, “Optimization of fuzzy controllers for autonomous mobile robots using the grey wolf optimizer,” Stud. Comput. Intell., Vol. 827, pp. 289–99, 2020. doi:10.1007/978-3-030-34135-0_20.
  • O. R. Carvajal, O. Castillo, and J. Soria, “Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the flower pollination algorithm,” J. Autom. Mob. Robot. Intell. Syst., Vol. 12, no. 1, pp. 44–9, 2018. doi:10.14313/JAMRIS_1-2018/6.
  • C. Caraveo, F. Valdez, and O. Castillo, “A new meta-heuristics of optimization with dynamic adaptation of parameters using type-2 fuzzy logic for trajectory control of a mobile robot,” Algorithms, Vol. 10, no. 3, pp. 1–16, 2017. doi:10.3390/a10030085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.