192
Views
2
CrossRef citations to date
0
Altmetric
Articles

Diagnosis of Multiple Rotor Bar Faults of Squirrel Cage Induction Motor (SCIM) Using Rational Dilation Wavelet Transforms

ORCID Icon &

References

  • A. Naha, A. K. Samanta, A. Routray, and A. K. Deb, “A method for detecting half-broken rotor bar in lightly loaded induction motors using current,” IEEE Trans. Instrum. Meas., Vol. 65, no. 7, pp. 1614–1625, 2016. doi: 10.1109/TIM.2016.2540941
  • P. Zhang, Y. Du, T. G. Habetler, and B. Lu, “A survey of condition monitoring and protection methods for medium-voltage induction motors,” IEEE Trans. Ind. Appl., Vol. 47, no. 1, pp. 34–46, 2011. doi: 10.1109/TIA.2010.2090839
  • R. Tabasian, M. Ghanbari, A. Esmaeli, and M. Jannati, “Control of three-phase induction machine drives during open-circuit fault: A review,” IETE. J. Res., 2020. doi:10.1080/03772063.2020.1724833.
  • Z. Hou, J. Huang, H. Liu, M. Ye, Z. Liu, and J. Yang, “Diagnosis of broken rotor bar fault in open- and closed-loop controlled wye-connected induction motors using zero-sequence voltage,” IET Electr. Power Appl., Vol. 11, no. 7, pp. 1214–1223, 2017. doi: 10.1049/iet-epa.2016.0505
  • Z. Hou, H. Liu, L. Zhao, J. Huang, and T. Wang, “Quantitative broken rotor bar fault detection for closed-loop controlled induction motors,” IET Electr. Power Appl., Vol. 10, no. 5, pp. 403–410, 2016. doi: 10.1049/iet-epa.2015.0440
  • P. C. M. Lamim Filho, R. Pederiva, and J. N. Brito, “Detection of stator winding faults in induction machines using flux and vibration analysis,” Mech. Syst. Signal Process, Vol. 42, no. 1–2, pp. 377–387, 2014. doi: 10.1016/j.ymssp.2013.08.033
  • T. Goktas, and M. Arkan, “Discerning broken rotor bar failure from low-frequency load torque oscillation in DTC induction motor drives,” Trans. Inst. Meas. Contr., Vol. 40, no. 1, pp. 279–286, 2018. doi: 10.1177/0142331216654964
  • C. Kral, F. Pirker, and G. Pascoli, “The impact of inertia on rotor faults effects theoretical aspects of the Vienna monitoring method,” IEEE Trans. Power Electron., Vol. 23, no. 4, pp. 2136–2142, 2008. doi: 10.1109/TPEL.2008.925183
  • H. Khelfi, and S. Hamdani, “Induction motor rotor fault diagnosis using three-phase current intersection signal,” Electr. Eng., Vol. 102, pp. 539–548, 2020. doi: 10.1007/s00202-019-00894-7
  • H. Khelfi, and S. Hamdani, “Temporal envelope detection by the square root of the three-phase currents for IM rotor fault diagnosis,” Electr. Eng., 2020. doi:10.1007/s00202-020-01000-y.
  • G. Mirzaeva, K. I. Saad, and M. G. Jahromi, “Comprehensive diagnostics of induction motor faults based on measurement of space and time dependencies of air gap flux,” IEEE Trans. Ind. Appl., Vol. 53, no. 3, pp. 2657–2666, 2017. doi: 10.1109/TIA.2016.2628718
  • G. Mirzaeva, and K. I. Saad, “Advanced diagnosis of stator turn-to-turn faults and static eccentricity in induction motors based on internal flux measurement,” IEEE Trans. Ind. Appl., Vol. 54, no. 4, pp. 3961–3970, 2018. doi: 10.1109/TIA.2018.2821098
  • V. Climente-Alarcon, A. Arkkio, and J. Antonino-Daviu, “2-D magneto mechanical transient study of a motor suffering a bar breakage,” IEEE Trans. Ind. Appl., Vol. 54, no. 3, pp. 2097–2104, 2018. doi: 10.1109/TIA.2018.2791918
  • D. Morinigo-Sotelo, R. D. J. Romero-Troncoso, P. A. Panagiotou, J. A. Antonino-Daviu, and K. N. Gyftakis, “Reliable detection of rotor bars breakage in induction motors via MUSIC and ZSC,” IEEE Trans. Ind. Appl., Vol. 54, no. 2, pp. 1224–1234, 2018. doi: 10.1109/TIA.2017.2764846
  • J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Vibration analysis based interturn fault diagnosis in induction machines,” IEEE Trans. Ind. Inform., Vol. 10, no. 1, pp. 340–350, 2014. doi: 10.1109/TII.2013.2271979
  • L. Frosini, C. Harlisca, and L. Szabo, “Induction machine bearing fault detection by means of statistical processing of the stray flux measurement,” IEEE Trans. Ind. Electron., Vol. 62, no. 3, pp. 1846–1854, 2015. doi: 10.1109/TIE.2014.2361115
  • H. Berriri, M. W. Naouar, S. Member, and I. Slama-belkhodja, “Easy and fast sensor fault detection and isolation algorithm for electrical drives,” IEEE Trans. Power Electron., Vol. 27, no. 2, pp. 490–499, 2012. doi: 10.1109/TPEL.2011.2140333
  • S. Wang, I. W. Selesnick, G. Cai, Y. Feng, X. Sui, and X. Chen, “Nonconvex sparse regularization and convex optimization for bearing fault diagnosis,” IEEE Trans. Ind. Electron., Vol. 65, no. 9, pp. 7332–7342, 2018. doi: 10.1109/TIE.2018.2793271
  • J. Sun, C. Yan, and J. Wen, “Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning,” IEEE Trans. Instrum. Meas., Vol. 67, no. 1, pp. 185–195, 2017. doi: 10.1109/TIM.2017.2759418
  • G. Devarajan, M. Chinnusamy, and L. Kaliappan, “Detection and classification of mechanical faults of three phase induction motor via pixels analysis of thermal image and adaptive neuro-fuzzy inference system,” J. Am. Intell. Human Comput., 2020. doi:10.1007/s12652-020-01857-8.
  • M. Otero, S. Member, P. M. De Barrera, S. Member, G. R. Bossio, and R. Leidhold, “A strategy for broken bars diagnosis in induction motors drives,” IEEE Lat. Am. Trans., Vol. 16, no. 2, pp. 322–328, 2018. doi: 10.1109/TLA.2018.8327382
  • A. Naha, S. Member, A. K. Samanta, and S. Member, “Low complexity motor current signature analysis using sub-Nyquist strategy with reduced data length,” IEEE Trans. Instrum. Meas., Vol. 66, no. 12, pp. 3249–3259, 2017. doi: 10.1109/TIM.2017.2737879
  • L. Eren, “Bearing fault detection by one-dimensional convolutional neural networks,” Math. Probl. Eng., Vol. 2017, pp. 1–9, 2017. doi: 10.1155/2017/8617315
  • R. G. H. Xianghui Huang, and T. G. Habetler, “Detection of rotor eccentricity faults in a closed-loop drive-connected induction motor using an artificial neural network,” IEEE Trans. Power Electron., Vol. 22, no. 4, pp. 1552–1559, 2007. doi: 10.1109/TPEL.2007.900607
  • I. Harzelli, A. Menacer, and T. Ameid, “A fault monitoring approach using model-based and neural network techniques applied to input–output feedback linearization control induction motor,” J. Amb. Intell. Human Comput., Vol. 11, pp. 2519–2538, 2020. doi: 10.1007/s12652-019-01307-0
  • H. Zhao, J. Zheng, W. Deng, and Y. Song, “Semi-Supervised Broad Learning system based on Manifold Regularization and Broad Network,” in IEEE Trans. Circ. Syst. I Regular Pap., Vol. 67, no. 3, pp. 983–994, March 2020. doi:10.1109/TCSI.2019.2959886.
  • M. Soualhi, K. T. P. Nguyen, and K. Medjaher, “Pattern recognition method of fault diagnostics based on a new health indicator for smart manufacturing,” Mech. Syst. Signal. Process., Vol. 142, pp. 106680, 2020. doi:10.1016/j.ymssp.2020.106680.
  • A. S. Raj, and N. Murali, “Early classification of bearing faults using morphological operators and fuzzy inference,” IEEE Trans. Ind. Electron., Vol. 60, no. 2, pp. 567–574, 2013. doi: 10.1109/TIE.2012.2188259
  • S. Liu, Y. Sun, and L. Zhang, “A novel fault diagnosis method based on noise-assisted MEMD and functional neural fuzzy network for rolling element bearings,” IEEE. Access, Vol. 6, pp. 27048–27068, 2018. doi: 10.1109/ACCESS.2018.2833851
  • M. A. Mohamed, A.-A. A. Mohamed, M. Abdel-Nasser, E. E. M. Mohamed, and M. A. Moustafa Hassan, “Induction motor broken rotor bar faults diagnosis using ANFIS-based DWT,” Int. J. Model. Simul., 2020. doi:10.1080/02286203.2019.1708173.
  • I. Martin-Diaz, D. Morinigo-Sotelo, O. Duque-Perez, and R. J. Romero-Troncoso, “An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions,” IEEE Trans. Ind. Appl., Vol. 54, no. 3, pp. 2215–2224, 2018. doi: 10.1109/TIA.2018.2801863
  • L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural Network based data-driven fault diagnosis method,” IEEE Trans. Ind. Electron., Vol. 65, no. 7, pp. 5990–5998, 2017. doi: 10.1109/TIE.2017.2774777
  • R. A. Lizarraga-Morales, C. Rodriguez-Donate, E. Cabal-Yepez, M. Lopez-Ramirez, L. M. Ledesma-Carrillo, and E. R. Ferrucho-Alvarez, “Novel FPGA-based methodology for early broken rotor bar detection and classification through homogeneity estimation,” IEEE Trans. Instrum. Meas., Vol. 66, no. 7, pp. 1760–1769, 2017. doi: 10.1109/TIM.2017.2664520
  • T. Ince, “Real-time broken rotor bar fault detection and classification by shallow 1D convolutional neural networks,” Electr. Eng., Vol. 101, pp. 599–608, 2019. doi: 10.1007/s00202-019-00808-7
  • J. Wang, L. Qiao, Y. Ye, and Y. Chen, “Fractional envelope analysis for rolling element bearing weak fault feature extraction,” IEEE/CAA J. Autom. Sin., Vol. 4, no. 2, pp. 353–360, 2017. doi: 10.1109/JAS.2016.7510166
  • H. Talhaoui, A. Menacer, A. Kessal, and A. Tarek, “Experimental diagnosis of broken rotor bars fault in induction machine based on Hilbert and discrete wavelet transforms,” Int. J. Adv. Manuf. Technol. Iss., Vol. 95, pp. 1399–1408, 2018. doi: 10.1007/s00170-017-1309-7
  • H. Zhao, H. Liu, J. Xu, and W. Deng, “Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine,” IEEE Trans. Instr. Meas., 2019. doi:10.1109/TIM.2019.2948414.
  • W. Deng, H. Liu, J. Xu, H. Zhao, and Y. Song, “An improved quantum-inspired differential evolution algorithm for deep belief network,” IEEE Trans. Instr. Meas., 2020. doi:10.1109/TIM.2020.2983233.
  • S. E. Pandarakone, Y. Mizuno, and H. Nakamura, “Distinct fault analysis of induction motor bearing using frequency spectrum determination and support vector machine,” IEEE Trans. Ind. Appl., Vol. 53, no. 3, pp. 3049–3056, 2017. doi: 10.1109/TIA.2016.2639453
  • C. Tyrén. “Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance,” WO 2001073389 A1, International Patent, 2001.
  • J. CusidÓCusido, L. Romeral, J. A. Ortega, J. A. Rosero, and A. G. Espinosa, “Fault detection in induction machines using power spectral density in wavelet decomposition,” IEEE Trans. Ind. Electron., Vol. 55, no. 2, pp. 633–643, 2008. doi: 10.1109/TIE.2007.911960
  • Madhusudhana Reddy Barusu, S. Umamaheswari, and D. Meganathan, “Non-invasive method for rotor bar fault diagnosis in three-phase squirrel cage induction motor with advanced signal processing technique,” IET J. Eng., Vol. 2019, no. 17, pp. 4415–4419, 2019.
  • R. B. Randall, and J. Antoni, “Rolling element bearing diagnostics – A tutorial,” Mech. Syst. Signal. Process., Vol. 25, no. 2, pp. 485–520, 2011. doi: 10.1016/j.ymssp.2010.07.017
  • P. Arun, S. Abraham Lincon, and N. Prabhakaran, “Detection and characterization of bearing faults from the frequency domain features of vibration,” IETE. J. Res., Vol. 64, no. 5, pp. 634–647, 2018. doi: 10.1080/03772063.2017.1369369
  • M. He, and D. He, “Deep learning based approach for bearing fault diagnosis,” IEEE Trans. Ind. Appl., Vol. 53, no. 3, pp. 3057–3065, 2017. doi: 10.1109/TIA.2017.2661250
  • M. F. Yaqub, I. Gondal, J. Kamruzzaman, and K. A. Loparo, “Abrasion modeling of multiple-point defect dynamics for machine condition monitoring,” IEEE Trans. Reliab., Vol. 62, no. 1, pp. 171–182, 2013. doi: 10.1109/TR.2013.2241231
  • F. Immovilli, M. Cocconcelli, A. Bellini, and R. Rubini, “Detection of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or current signals,” IEEE Trans. Ind. Electron., Vol. 56, no. 11, pp. 4710–4717, 2009. doi: 10.1109/TIE.2009.2025288
  • B. Li, M. Y. Chow, Y. Tipsuwan, and J. C. Hung, “Neural-network-based motor rolling bearing fault diagnosis,” IEEE Trans. Ind. Electron., Vol. 47, no. 5, pp. 1060–1069, 2000. doi: 10.1109/41.873214
  • T. A. Harris. Introduction to rolling bearings. Chichester: John Wiley & Sons, Inc, 1991.
  • S. Electronics. “X-band microwave motion sensor module application note.”
  • V. E. Thoren, “Prosthaphaeresis revisited,” Hist. Math., Vol. 15, no. 1, pp. 32–39, 1988. doi: 10.1016/0315-0860(88)90047-X
  • S. Faruque. Radio frequency modulation made easy. Grand Forks: Springer International Series, 2017.
  • J. Martinez, A. Belahcen, and A. Muetze, “Analysis of the vibration magnitude of an induction motor with different numbers of broken bars,” IEEE Trans. Ind. Appl., Vol. 53, no. 3, pp. 2711–2720, 2017. doi: 10.1109/TIA.2017.2657478
  • M. O. Sonnaillon, R. Urteaga, and F. J. Bonetto, “Software PLL based on random sampling,” IEEE Trans. Instrum. Meas., Vol. 59, no. 10, pp. 2621–2629, 2010. doi: 10.1109/TIM.2009.2036459
  • R. G. Lyons. Understanding digital signal processing. Pears on, 2012.
  • P. Wang, L. Shi, Y. Zhang, Y. Wang, and L. Han, “Broken rotor bar fault detection of induction motors using a joint algorithm of trust region and modified bare-bones particle swarm optimization,” Chin. J. Mech. Eng., Vol. 32, no. 10, 2019. doi:10.1186/s10033-019-0325-y.
  • K. C. D. Kompella, V. G. R. Mannam, and S. R. Rayapudi, “DWT based bearing fault detection in induction motor using noise cancellation,” J. Electr. Syst. Inf. Technol., Vol. 3, no. 3, pp. 411–427, 2016. doi: 10.1016/j.jesit.2016.07.002
  • Madhusudhana Reddy Barusu, S. Umamaheswari, and D. Meganathan, “Diagnosis of bearing outer race faults using a low-cost non-contact method with advanced wavelet transforms,” Elektron. Elektrotech., Vol. 25, no. 1, pp. 44–53, 2019. doi: 10.5755/j01.eie.25.1.22735
  • M. A. Moussa, M. Boucherma, and A. Khezzar, “A detection method for induction motor bar fault using sidelobes leakage phenomenon of the sliding discrete Fourier transform,” IEEE Trans. Power Electron., Vol. 32, no. 7, pp. 5560–5572, 2017. doi: 10.1109/TPEL.2016.2605821
  • I. I. Bayram, and I. W. Selesnick, “Frequency-domain design of overcomplete rational-dilation wavelet transforms,” IEEE Trans. Signal Process., Vol. 57, no. 8, pp. 2957–2972, 2009. doi: 10.1109/TSP.2009.2020756
  • I. Bayram, and I. W. Selesnick, “Overcomplete discrete wavelet transforms with rational dilation factors,” IEEE Trans. Signal Process., Vol. 57, no. 1, pp. 131–145, 2009. doi: 10.1109/TSP.2008.2007097
  • J. Zarei, “Induction motors bearing fault detection using pattern recognition techniques,” Expert Syst. Appl., Vol. 39, no. 1, pp. 68–73, 2012. doi: 10.1016/j.eswa.2011.06.042
  • Madhusudhana Reddy Barusu, and M. Deivasigamani, “Non-invasive vibration measurement for diagnosis of bearing faults in 3-phase Squirrel cage induction motor using microwave sensor,” IEEE Sens. J., 2020 doi:10.1109/JSEN.2020.3004515.
  • P. P. Wang, X. X. Chen, Y. Zhang, Y. J. Hu, and C. X. Miao, “IBPSO-based MUSIC algorithm for broken rotor bars fault detection of induction motors,” Chin. J. Mech. Eng., Vol. 31, no. 80, pp. 1–10, 2018.
  • T. Vaimann, J. Sobra, B. Anouar, A. Rassõlkin, M. Rolak, and A. Kallaste, “Induction machine fault detection using smartphone recorded audible noise,” IET Sci. Meas. Technol., Vol. 12, no. 4, pp. 554–560, 2018. doi: 10.1049/iet-smt.2017.0104
  • A. Glowacz, W. Glowacz, J. Kozik, K. Piech, M. Gutten, W. Caesarendra, H. Liu, F. Brumercik, M. Irfan, and Z. Faizal Khan, “Detection of deterioration of three-phase induction motor using vibration signals,” Meas. Sci. Rev., Vol. 19, no. 6, pp. 241–249, 2019. doi: 10.2478/msr-2019-0031
  • W. Caesarendra, M. Pratama, B. Kosasih, T. Tjahjowidodo, and A. Glowacz, “Parsimonious network based on a fuzzy inference system (PANFIS) for time series feature prediction of low speed slew bearing prognosis,” Appl. Sci., Vol. 8, no. 12, pp. 2656, 2018. doi: 10.3390/app8122656
  • A. Signal, M. Can, B. E. Used, T. O. Test, F. O. R. Structural, and F. In. “Bearing health diagnosed with a mobile phone: acoustic signal measurements can be used to test for structural faults in motors,” Vol. 24, no. 4, pp. 17–23, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.