88
Views
0
CrossRef citations to date
0
Altmetric
Articles

A Committee Machine Neural Network for Dynamic and its Inverse Modeling of Distortions and Impairments in Wireless Transmitters

, &

References

  • R. Singla, and S. Sharma, “Digital predistortion of power amplifiers using look-up table method with memory effects for LTE wireless systems,” EURASIP J. Wirel. Commun. Netw, Vol. 2012, no. 1, pp. 1–8, 2012.
  • J. I. N. Xu, W. Jiang, L. Ma, M. Li, Z. Yu, and Z. Geng, “Augmented time-Delay Twin Support vector regression-based behavioral modeling for digital predistortion of RF power amplifier,” IEEE. Access., Vol. 7, pp. 59832–59843, 2019.
  • ETSI, “Universal Mobile Telecommunications system (UMTS); Base Station (BS) radio transmission and reception (FDD) (3GPP TS 25.104 version 8.1.0 Release 8),” Data Sheet, pp. 1–84, 2008.
  • E. E. Eid, F. M. Ghannouchi, and F. Beauregard, “Optimal feedforward linearization system design,” Microw. J., Vol. 38, no. 11, pp. 78–83, 1995.
  • Y. Yang, Y. Y. Woo, and B. Kim, “Optimization for error-canceling loop of the feedforward amplifier using a new system-level mathematical model,” IEEE Trans. Microw. Theory Tech., Vol. 51, no. 2 I, pp. 475–482, 2003.
  • A. K. Ezzeddine, H. L. A. Hung, and H. C. Huang, “An MMAC C-band FET feedback power amplifier,” IEEE Trans. Microw. Theory Tech., Vol. 38, no. 4, pp. 350–357, 1990.
  • M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Veh. Technol., Vol. 47, no. 1, pp. 209–215, 1998.
  • A. N. D’Andrea, V. Lottici, and R. Reggiannini, “RF ower amplifier linearization through amplitude and phase predistortion,” IEEE Trans. Commun, Vol. 44, no. 11, pp. 1477–1484, 1996.
  • M. Faulkner, and M. Johansson, “Adaptive linearization using predistortion—experimental results,” IEEE Trans. Veh. Technol., Vol. 43, no. 2, pp. 323–332, 1994.
  • J. K. Cavers, “Amplifier linearization using a digital predistorter with Fast Adaptation and Low memory Requirements,” IEEE Trans. Veh. Technol, Vol. 39, no. 4, pp. 374–382, 1990.
  • S. P. Stapleton, “Amplifier linearization using adaptive digital predistortion,” Applied Microwave and Wireless, Vol. 13, no. 2, pp. 72–97, 2001.
  • R. Sperlich. “Adaptive power amplifier linearization by digital pre-distortion with narrowband feedback using genetic algorithms,” Sch. Electr. Comput. Eng., vol. PhD, no. August, 2005.
  • A. Katz, “Linearization: reducing distortion in power Amplifiers,” IEEE Microwave Mag., pp. 37–49, 2001.
  • J. C. Pedro, and S. A. Maas, “A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches,” IEEE Trans. Microw. Theory Tech., Vol. 53, no. 4 I, pp. 1150–1163, 2005.
  • J. T. Stonick, V. L. Stonick, J. M. F. Moura, and R. Sam Zborowski. “Memoryless polynomial adaptive predistortion,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings, 1995, vol. 2.
  • C. Rapp. “Effects of HPA-nonlinearity on 4-DPSK / OFDM-signal for a digital sound broadcasting system,” no. October 1991, 2018.
  • A. A. M. Saleh, “Frequency-Independent and frequency-dependent nonlinear models of TWT Amplifiers,” IEEE Trans. Commun., Vol. 29, no. 11, pp. 1715–1720, 1981.
  • M. Ibnkahla, J. Sombrin, F. Castanie, and N. J. Bershad, “Neural networks for modeling nonlinear memoryless communication channels,” IEEE Trans. Commun, Vol. 45, no. 7, pp. 768–771, 1997.
  • J. H. K. Vuolevi, T. Rahkonen, and J. P. A. Manninen, “Measurement technique for characterizing memory effects in RF power amplifiers,” IEEE Trans. Microwave Theory Tech., Vol. 49, no. 8, pp. 1383–1389, 2001.
  • J. Kim, and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett, Vol. 37, no. 23, pp. 1417–1418, 2001.
  • L. Ding, et al., “A Robust digital baseband predistorter constructed using memory Polynomials,” IEEE Trans. Commun., Vol. 52, no. 1, pp. 159–165, 2004.
  • D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process, Vol. 54, no. 10, pp. 3852–3860, 2006.
  • F. M. Ghannouchi, O. Hammi, and M. Helaoui. Behavioral Modeling and Predistortion of Wideband Wireless Transmitters. 2015.
  • Y. Fang, M. C. E. Yagoub, F. Wang, and Q. J. Zhang, “A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks,” IEEE Trans. Microw. Theory Tech, Vol. 48, no. 12, pp. 2335–2344, 2000.
  • D. Luongvinh, and Y. Kwon. “Behavioral modeling of power amplifiers using fully recurrent neural networks,” in IEEE MTT-S International Microwave Symposium Digest, 2005, vol. 2005.
  • M. Rawat, K. Rawat, and F. M. Ghannouchi, “Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks,” IEEE Trans. Microw. Theory Tech, Vol. 58, no. 1, pp. 95–104, 2010.
  • M. Isaksson, D. Wisell, and D. Rönnow, “Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks,” IEEE Trans. Microwave Theory Tech., Vol. 53, no. 11, pp. 3422–3428, 2005.
  • M. Rawat, and F. M. Ghannouchi, “A mutual distortion and impairment compensator for wideband direct-conversion transmitters using neural networks,” IEEE Trans. Broadcast, Vol. 58, no. 2, pp. 168–177, 2012.
  • Y. D. Kim, E. R. Jeong, and Y. H. Lee, “Adaptive compensation for power amplifier nonlinearity in the presence of quadrature modulation/demodulation errors,” IEEE Trans. Signal Process., Vol. 55, no. 9, pp. 4717–4721, 2007.
  • J. K. Cavers, “The effect of quadrature modulator and Demodulator errors on adaptive digital Predistorters for amplifier linearization,” IEEE Trans. Veh. Technol, Vol. 46, no. 2, pp. 456–466, 1997.
  • L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. T. Zhou, “Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems,” IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 55, no. 1, pp. 390–397, 2008.
  • L. Anttila, P. Handel, and M. Valkama, “Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters,” IEEE Trans. Microw. Theory Tech, Vol. 58, no. 4, pp. 730–739, 2010.
  • M. Rawat, and F. M. Ghannouchi, “Distributed spatiotemporal neural network for nonlinear dynamic transmitter modeling and adaptive digital predistortion,” IEEE Trans. Instrum. Meas, Vol. 61, no. 3, pp. 595–608, 2012.
  • R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of Local experts,” Neural Comput., Vol. 3, pp. 79–87, 1991.
  • M. I. Jordan, and R. A. Jacobs. “Hierarchical mixtures of experts and the EM algorithm,” in Proceedings of the International Joint Conference on Neural Networks, 1993, vol. 2.
  • S. Haykin. Neural networks: A comprehensive foundation, vol. 3, 1997.
  • S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,” IEEE Trans. Neural Networks Learn. Syst, Vol. 23, no. 8, pp. 1177–1193, 2012.
  • L. Xu, M. I. Jordan, and G. E. Hinton, “An alternative model for mixtures of experts,” Nips, no. 7, pp. 633–640, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.